محیط رسوبی پادگانه های آبرفتی جنوب خرم آباد تا پلدختر با استفاده از عناصر ساختاری (Architectural Elements) و سطوح محدود کننده (Bounding Surface)

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم‌آباد، ایران

2 دانشجوی دکترا رسوب‌شناسی و سنگ‌رسوبی، دانشگاه بوعلی‌سینا، همدان، ایران؛ کارشناس آزمایشگاه مرکزی دانشگاه لرستان، خرم‌آباد، ایران

چکیده

هدف از این پژوهش تعیین محیط رسوبی پادگانه­های آبرفتی جنوب خرم­آباد تا پلدختر با استفاده از عناصر ساختاری و سطوح محدود کننده می­باشد. در راستای این هدف 4 برش شناسایی و مورد مطالعه قرار گرفتند. برش­ها در فواصل بین 60 تا 80 کیلومتری جنوب شهرستان خرم­آباد به سمت پلدختر واقع شده­اند. مطالعات صورت گرفته بر روی این برش­ها منجر به شناسایی 10 رخساره سنگی، شامل 4 رخساره سنگی گراولی (Gm, Gms, Gp, Gt)، 4 رخساره سنگی ماسه­ای (Sm, Sp, St, Sh) و 2 رخساره سنگی گلی (Fsm, Fm)، 13 عنصر ساختاری که شامل (GB, HS, C/S, LHF, LCS, CVs, DIs, TCS, OF, CH, SB, SHF, LIS) و 6 سطح محدود کننده رتبه 1 تا 6 گردید. با توجه به رخساره­های سنگی، سطوح مـحدود کننده و عناصر ساختاری زیر محیط­های کانال (Channel)، سدهای کانالی (Channel Bars)، پوینت بار (Point Bar)، بریدگی­های پهن (Crevasse splay)، خاکریزهای طبیعی (Levee) و زیرمحیط دشت سیلابی (Flood plain) برای پادگانه­های آبرفتی جنوب خرم­آباد تا پلدختر تعیین شدند. در پادگانه­های آبرفتی مورد مطالعه عـناصر سـاختاری CH, GB, C/S, LHF, SHF به فراوانی مشاهده شدند که این موضوع دلالت بر محیط رودخانه­ای با پیچش کم برای پادگانه­های آبرفتی مورد مطالعه دارد که به طور متناوب در بازه­های زمانی مورد هجوم سیلاب­های قوی و مخرب قرار می­گرفته و بر هم­نشینی کانال­های سیلابی دلالت بر دوره­ای بودن آن­ها می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

The sedimentary environment of alluvial terraces south of Khorram Abad to Poldokhter using architectural elements and bounding surfaces

نویسندگان [English]

  • B. Yosefi yegane 1
  • S. M. R. Emami Meybodi 1
  • M. Sedaghatnia 2
1 Assist. Prof., Dept., of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
2 Ph. D., student sedimentology and sedimentary rocks, Bu Ali Sina University, Hamedan, Iran, Expert of the Central Laboratory of Lorestan University, Khorramabad, Iran
چکیده [English]

The purpose of this research is to determine the sedimentary environment of alluvial terraces south of Khorramabad to Poldokhter using structural elements and limiting surfaces. In line with this goal, 4 sections were identified and studied. The cuttings are located at distances between 60 and 80 kilometers south of Khorram Abad towards Poldokhter. The studies conducted on these sections lead to the identification of 10 rock facies, including 4 gravelly rock facies (Gm, Gms, Gp, Gt), 4 sandy rock facies (Sm, Sp, St, Sh) and 2 rock facies. Flower (Fsm, Fm), 13 structural elements including (GB, HS, C/S, LHF, LCS, CVs, DIs, TCS, OF, CH, SB, SHF, LIS) and 6 limiting levels of rank 1 to 6 became. According to rock faces, limiting surfaces and structural elements under channel environments, channel bars, point bar, wide cuts (crevasse splay), natural embankments (levee).) and flood plain sub-environment were determined for the alluvial terraces south of Khorramabad to Poldokhtar. Structural elements CH, GB, C/S, LHF, SHF were observed in the studied alluvial barracks in abundance, which indicates a river environment with low twist for the studied alluvial terraces, which alternates between at times, it was attacked by strong and destructive floods, and the coexistence of flood channels indicates that they are periodic.

کلیدواژه‌ها [English]

  • Alluvial terrace
  • Structural elements
  • Rock facies
  • Sedimentary environment
  • Khorramabad
احمدی، ر (1388) ژئومورفولوژی کاربردی، جلد اول، فرسایش آبی، انتشارات دانشگاه تهران، 688 ص
بهبهانی، ر.، خدابخش، س (1397) تحلیل رسوب­شناسی سیستم­های رودخانه­ای، نشریه یافته­های نوین زمین­شناسی کاربردی، دوره 12، شماره 24، ص 102 تا 124.
خدامی، م.، محبوبی، ا.، موسوی­حرمی، ر.، فیض­نیا، س (1386)  تجزیه رخساره­های سنگی و مدل رسوبی رودخانه لاتشور، جنوب خاور تهران، مجله علوم زمین، سال شانزدهم، شماره 63 ، ص 110 – 124.
مطیعی، ه (1374) زمین­شناسی نفت زاگرس، جلد 1 و 2، سازمان زمـین­شناسی کـشور، طـرح تـدویـن کـتاب زمین­شناسی ایران، 850 ص.
موسوی­حرمی، س. ر (1367) رسوب­شناسی، انتشارات آستان قدس رضوی، 470 ص.
موسوی­حرمی، س. ر.، محبوبی، ا.، غفوری، م.، خانه­باد، م (1382)  مطالعات رسوب­شناسی و نرخ ریزشوندگی به طرف پایین­دست حوضه آبریز بند گلستان جنوب غرب مشهد. مجله علوم دانشگاه تهران، دوره 29، شماره 1، ص 87 – 117.
Adeloye, A. J., Soundharajan, B. S (2019) Effect of dynamically varing zone hedging policies on surface water reservoir operational performance during climate change. Geel. Soc. of London Special Publ, 488: 27-289.
Allen, J. R. L (1983) Studies in fluviatile sedimentation: Bars, barcomplexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), welsh Borders. Sedimentary Geology, 33: 237-293.
Asselman, N. E. M., Middelkoop, H (1998) Temporal variability of contemporary floodplain sedimentation in the Rhine- Meuse_Delta, The Netherlands. Earth Surface Processes and Landforms, 23: 595-609.
Benito, G., Sopena, A., Sanchez, Y., Machado, M. J., & Perez Gonzalez, A (2003) Palaeoflood Record of theTagus River (Central Spain) during the Late Pleistocene and Holocene. Quaternary Science Reviews, 22: 1737-1756.
Bertoldi, W., Zanoni, L. and Tubino, M (2010) Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: The Tagliamento River (Italy). Geomorphology, 114: 348-360.
Best, J., Fielding, C. R (2019) Describing fluvial systems: linking process to deposits and stratigraphy. Geol. Soc. of London Special Publ, 488:152-166.
Bridge, J. S (1993) Description and interpretation of fluvial deposits: a critical perspective. Sedimentology, 40: 801- 810.
Bridge, J. S (1993) The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. In: Best JL, Bristow CS. (Eds.) Braided Rivers. Geol. Soc. Spec. Pub, 75: 13- 71.
Cant, D. J (1978) Development of a facies model for sandy braided river sedimentation: Comparison of the South Saskatchewan River and the Bateery Point Formation: in A. D. Miall, ed., Fluvial Sedimentology; Can. Soc. Pertol. Geol. Mem, 5: 627-640.
Carling, P. A (1996) Subaqueous gravel dunes. Jpurnal of Sedimentary Research, 69: 534-545.
Carols, H. L., Bruhn., Walker, R. G (1997) Internal architecture and sedimentary evolution of coares- grained, turbidite channel- levee complexes, Early Eocene Regencia Canyon, Espirito Santo Basin, Brazil, Sedimentologu, 44: 17-46.
Collinson, J. D (1986 b) Alluvial sediments. In:  Sedimentary Environment and Facies (Ed. By H. G. Reading), Blackwells. Oxford. 20-62.
Collinson, J. D. and Thompson, D. B (1989) Sedimentary Structures, 2nd ed. Unwin Hyman, London, 207 p.
Corbett, P., Owen, A., Hartley, A., Pla- Pueyo, S., Barreto, D., Hackney, C (Eds (2019) River to reservoir: geoscience to engineering, Geop. Soc. of London, Special Publ. 488.
Costa, J. E (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyper concentrated flows, and debris flows. In: V. R. Baker, R. C. Kochel, and P. C. Patton (eds.), Flood Geomorphology. Wiley, New York, NY, 113- 122.
Demoulin, A (2011) Basin and river profile morphometry: A new index with a high potential for relative dating of tectonic uplift. Geomorphology, 126: 97-107.
Falcon, N. L (1961) Major earth-flexing in the Zagros Mountains of South-west Iran. Quarterly Journal of Geological Society of London, 117(4): 367-376.
Friend, P. F., & Dade, W. B (2005) Transport modes and grain size patterns in fluvial basins. In: Blum, M. D., Marriott, S. B., & Leclair, S. F., (Eds.), Fluvial sedimentology VII. Special Publication of International Association of Sedimentologists, Blackwell Publishing Ltd., 35: 399-407.
Ghazi, S., Mountney, N. P (2009) Facies and architectural element analysis of a meandering fluvial succession: The Permian Warchha Sandstone, Salt Range, Pakistan. Sedimentary Geololgy, 221: 99- 126.
Ghosh, S (2014) Palaeogeographic significance of ferruginous gravel lithofacies in the Ajaydamodar interfluve, west Bengal India.International journal of Geology, 4:81-100
Godin, P. D (1991) Fining - upward cycles in the sandy braided – river deposits of the Westwater Canyon Member (Upper Jurassic), Morrison Formation, New Mexico, Sedimentary Geology, 61-82.
Gomez, B., Rosser, B. J., Peacock, D. H., and Hick, D. M (2001) Downstream fining in a rapidly aggrading gravel bed river. Water Resources Research, 37: 1813-1823.
Hoey, T. B. and Bluck, B. J (1999) Identifying the controls over downstream fining of river gravels. Journal of Sedimentary Research, 69: 40-50.
Hubert, J. F. and Filipov, A. J (1989) Debris flow deposits in alluvial fans on the west flank of the white Mountains, owens valley, California, USA. Sedimentary Geology, 61: 177-205.
Khalifa, M., Catuneanu, Q (2008) Sedimentary of the bahariya formation (early Cenomanian), bahariya oasis, western desert, Egypt: journal of African earth sciences, 51: 89-103
Kim, S. B., Kim, Y. G., Jeang, H. R. J. K. S., and Cjough S. K (2009) Depositional facies, architecture and environments of the schwa formation (lower cretaceous), mid-west Korea with special reference to dinosaur eggs: cretaceous research, 30: 100-126
Kjemperud, V. A., Schomacher, E. K., & Cross, T. A (2008) Architecture and stratigraphy of alluvial deposits, Morinson Formation (Upper Jurassic), Utah. American Association of Petroleum Geologists Bulletin, 92 (8): 1055-1076.
Kleinhans, G. M (2001) The key role of fluvial dunes in transport and deposition of sand–gravel mixtures, a preliminary note. Sedimentary Geology, 143: 7-132.
Kosun, E., Poisson, A., Ciner, A., Wernli, R. and Monod, O (2009) Syn-tectonic sedimentary evolution of the Miocene atallar Basin, southwestern Turkey. Journal of Asian Earth Sciences, 34: 466-479.
Koykka, j (2011) Precambrian alluvial fan and braidplain sedimention patterns: Example from the Mesoproterozoic Rjukan Rift Basin, southern Norway.Sedimentary Geology, 234: 89-108.
Kumar, R., Ghosh, S. K., Mazari, R. K., and Sangode, S. J (2003) Tectonic impact on the fluvial deposits of Plio-Pleiostocene Himalyan foreland basin, India, Sedimentary Geology, 158: 209-234.
Mack, G. H., and James, W. C (1992) Paleosols for Sedimentologists. The Geological Society of America, Short Course Notes, 127 p.
Mannai-Tayech, B., & Otero, O (2005) Un nouveau gisement miocene a ichthyofaune au Sud de la chaine des C. hotts (Tunisie meridionale), paleoenvironnement et paleogeographie. Comptes Rendus Paleovol, 4: 405-412.
McKee, E. D., Weir, G. W (1983) Terminology of stratification and cross – stratification in sedimentary rocks. Geological Society of AmericaBulletin, 64: 381- 390.
McLaren, P (1981) An interpretation of trends in grain size measures. Journal of Sedimentary Petrology, 51: 611-624.
Miall, A. D (1977) A review of the braided river depositional environment. Earth Sci. Rev, 13: 1-62.
Miall, A. D (1985) Architectural element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev, 22: 261-308.
Miall, A. D (1988) Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies. AAPG Bulletin, 72: 682- 697.
Miall, A. D (1996) The geology of fluvial deposits. In: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Berlin.
Miall, A. D (2000) Principles of Sedimentary Basin Analysis. Springer, Berlin, 616 p.
Miall, A. D (2006) Case studies of oil and gas fields in fluvial reservoirs. In: The Geology of Fluvial Deposits. Springer, Berlin, Heidelberg.
Miall, A. D (2013) Fluvial depositional systems. Springer, Switzerland, 316 p.
Morison, S. R., Hein, F. J (1987) Sedimentology of the white channel gravels, Klondike area. Yukon Territory. In: F. G. Ethrigge, R.M. Flores and M. D. Harvey (EDS.), Recent development in fluidal sedimentology SOC. Econ. Paleontol. Mineral., Spec. Publ, 39: 205- 146.
Moussavi-Harami, R., Mahboubi, A. and Khanehbad, M (2004) Analysis of controls downstream fining along three gravelbed rivers in the Band-e-Golestan drainage basin NE Iran. Geomorphology, 61: 143-153.
Owen, A., Nichols, G. J., Hartley, A. J., Weissmann, G. S., Scuderi, L. A (2015) Quantification of a distributive fluvial system: the salt wash DFS of the morrison formation, SW USA. J. Sediment. Res, 85: 544-561.
Paphitis, D., Velegrakis, A. F., Collins, M. B. and Muirhead, A (2001) Laboratory investigation into the threshold of movement of natural sand-sized sediments under unidirectional, oscillatory and combined flows. Sedimentology, 48: 645- 659.
Peterson, C. D., Minor, R., Peterson, G. L., & Gates, E. B (2011) Pre-and post-Missoula flood geomorphology of the Pre-Holocene ancestral Columbia River Valley in the Portland forearc basin, Oregon and Washington, USA. Geomorphology.
Ramos, A. and A. Sopena (1983) Gravel bars in low sinuosity streams (Permian and Triassic, Central Spain). In: Modern and Ancient Fluvial Systems. J.D. Collinson and J. Lewin (Eds.), Spec. Publ. Int. Ass. Sediment, 301-312.
Rice, S (1999) The nature and controls on downstream fining within sedimentary links. Journal of Sedimentary Research, 69: 32-39.
Rust, B. R (1978) Depositional models for braided alluvium. In: Miall AD. (Ed.), Fluvial Sedimentology. Can. Soc. Petrol. Geol. Mem, 5: 605- 625.
Sear, D. A., & Newson, M. D (2003) Enviromental change in river channels: a neglected element. Towards geomorphologic typologies, standard and monitoring. The Science of the Total Enviroment, 310: 17-23.
Shanmugam, G (1996) High- density turbidity currents: Are they sandy debris flow? Journal of Sedimentary Research, 66: 2-10.
Snelder, T. H., Lamouroux, N., & Pella, H (2011) Empirical modelling of large scale patterns in river bed surface grain size. Geomorphology, 127: 189-197.
Sridhar, A., Chamyal, L. S., Bhattacharjee, F. and Singhvi, A. K (2013) Early Holocene fluvial activity from the sedimentology and palaeohydrology of gravel terrace in the semi-arid Mahi River Basin, India. Journal of Asian Earth Sciences, 66: 240-248.
Stow, D. A. V (2005) Sedimentary Rocks in the Field: A Colour Guide. Manson Publishing, 320 pp.
Stow, D. A. V., Nicholson, U., Kearsey, S., Tatum, D., Gardiner, A., Ghabra, A., Jaweesh, M (2020) The Pliocene-Recent Euphrates river system: Sediment facies and architecture as an analogue for subsurface reservoirs. Energy Geoscience, 1: 174-193.
Sun, D., Bloemendal, J., Rea, D. K., Vandenberg, J., Jiang, F., An, Z. and Su, R (1996) Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology, 152: 263-277.
Surian, N (2002) Downstream variation in grain size along an Alpine river: analysis of controls and processes. Geomorphology, 43: 137-149.
Suttner, L. J (1974) Sedimentary Petrographic provinces: An evaluation. In: Ross CA. (Ed.), Paleogeographic Provinces and Provinciality. Spec. Pub. Soc. Econ. Paleon. Mineral, 21: 75- 84.
Suttner, L. J., Basu, A., Mack, G. H (1981) Climate and the origin of quartzarenite. J. Sed. Pet, 51: 1235- 1246.
Tucker, M. E (1991) sedimentary petrology: an Introduction to the origin of sedimentary rocks. Blackwell, 260p.
Tucker, M. E (2001) Sedimentary Petrology: An Introduction to the Origin of the Sedimentary Rocks. 3rd Ed. Blackwell Sci. Publ., Oxford. 262 p.
Tucker, M. E (2003) Sedimentary Rocks in the Field. 3rd ed., John Wiley & Sons, 234 p.
Turner, P (1980) Continental Red Beds. Developments in Sedimentology. Elsevier, 562 p.
Woo, J., Shinn, Y. J., Kwon, Y. K., Chough, S. K (2006) The Janson and Myeonsan formation (Early Cambrian) of the Taebaek Group, mideast Korea: depositional processes and environments, Geosciences Journal, 10 (1): 35-57.
Yagishita, K (1997) Paleocurrent and analyses of fluvial conglomerates of the Paleogene Noda Group, northeast Japan. Sedimentary Geology, 109: 53-71.