بررسی تأثیر رخساره‌های رسوبی و فرایندهای دیاژنزی بر واحدهای جریان هیدرولیکی سازند شوریجه در یکی از میادین گازی، شمال خاور ایران

نویسندگان

1 دانشجوی کارشناسی‌ارشد زمین‌شناسی نفت، دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

2 دانشیار گروه علوم‌زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

3 استاد دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

چکیده

سازند شوریجه به سن کرتاسه پیشین (نئوکومین ـ بارمین) مهم­ترین سنگ مخزن آواری ـ کربناته در شمال خاور ایران است. عمده تولید گاز در زون‌های B و D این سازند صورت می‌گیرد. در این پژوهش برای درک عوامل کنترل کننده کیفیت مخزنی این سازند، بررسی‌های جامع پتروگرافی و پتروفیزیکی انجام گرفت. بر پایه مطالعات پتروگرافی تعداد 5 رخساره رسوبی (پتروفاسیس) شامل میکروکنـگلومرا، ماسه­سنگ، رس­سنگ/شیل، دولومادستون ماسه‌ای و اُاُییدگرینستون دولومیتی ماسه‌ای شناسایی شد. این رخساره‌های رسوبی (پتروفاسیس) متعلق به بخش بالایی پهنه جزرومدی، پهنه جزرومدی، لاگون، روخانه بریده بریده شامل پشته‌های طولی، و روخانه مئاندری (دشت سیلابی  و دریاچه شاخ گاوی) بوده که در یک محیط رودخانه‌ای ـ دریایی نهشته شده‌اند. براساس داده تخلخل و تراوایی حاصل از آنالیز مغزه، تعداد 4 واحد جریان هیدرولیکی (HFU) با استفاده از روش شاخص زون جریان (FZI) تفکیک گردید. یافته‌های این پژوهش نشان می‌دهد که گسترش فرآیندهای دیاژنزی انحلال، دولومیتی شدن و فشردگی شیمایی (استیلولیت و رگچه انحلالی) با رخساره‌های دانه درشت شامل کنگلومرا، ماسه‌سنگ و اُاُییدگرینستون دولومیتی ماسه‌ای مربوط به محیط پرانرژی رودخانه بریده بریده، لاگون و سدهای جزرومدی و واحدهای جریانی سه و چهار (HFU3، HFU4) که بهترین کیفیت مخزنی را دارند در ارتباط است.گسترش فرآیندهای دیاژنزی سیمانی شدن (سیلیسی، کربناته و انیدریتی) و دگرسانی فلدسپات­ها با رخساره‌های محیط کم انرژی رودخانه بریده بریده، مئاندری، دشت سیلابی و بالای جزرومدی و واحدهای جریانی یک و دو (HFU1، HFU2) که پایین‌ترین کیفیت مخزنی را دارند در ارتباط است.

کلیدواژه‌ها


عنوان مقاله [English]

Controls of depositional facies and diagenetic processes on hydraulic flow units of the Shurijeh Formation in the one Gas field, Northeast of Iran

نویسندگان [English]

  • M. Moradi 1
  • A. Kadkhodaie 2
  • H. Rahimpour-Bonab 3
1 M. Sc., student. Dept., of Petroleum Geology, College of Science, University of Tehran, Tehran, Iran
2 Assoc. Prof., Dept., of Geology, University of Tabriz, Tabriz, Iran
3 Prof., School of Geology, College of Science, University of Tehran, Tehran, Iran
چکیده [English]

Shurijeh Formation (Neocomian - Barremian) is the main hydrocarbon reservoir in north east Iran. Most gas reservoir production place in zones B and D of this formation. In this study, comprehensive petrographic and petrophysical studies were performed to understand the factors controlling the reservoir quality of this formation. With respect to the petrographic studies, well log data, evidence achieved from the core and drill cuttings, five primary facies (petrofacies), including micro-conglomerate, sandstone, claystone/shale, sandy dolomudstone, and dolomitic- sandy dolomitic ooid grainstone / hybrid, were identified in the deposits of Shurijeh Formation. Sedimentary facies of the Early Cretaceous reservoir in the studied wells belong to the upper part of the supratidal zone, intertidal zone, lagoon, braided river (longitudinal bars) and meandering river (flood plain and oxbow lake). In this study, based on porosity and permeability data, 4 units of Hydraulic flow units (HFUs) were identified using flow zone indicator (FZI) method. The results of this study showed that the diagenetic processes like dissolution, dolomitization and chemical compaction (stylolites and dissolved vein) are related to the grain supported facies including micro-conglomerate, sandstone and dolomitic- sandy dolomitic ooid grainstone / hybrid and hydraulic flow units (HFU4) and hydraulic flow unit (HFU3) that have the best reservoir quality are connected. The results of this study showed that the diagenetic processes like dissolution, dolomitization and pressure dissolution (stylolites and dissolved vein) are related to the grain supported facies including micro-conglomerate, sandstone and dolomitic- sandy dolomitic ooid grainstone / hybrid and hydraulic flow units 4 and 3 that have the best reservoir quality are connected. Diagenetic processes of cementation (Silica, carbonate and anhydrite) and alteration of feldspars are associated with the dominant mud facies including claystone/shale, sandy dolomudstone of hydraulic flow units 2 and 1 which have the lowest reservoir quality.
 

کلیدواژه‌ها [English]

  • Petrophysics
  • Diagenesis
  • Hydraulic flow units
  • Flow zone indicator
  • Reservoir quality
Afshar-Harb, A (1979) The stratigraphy, tectonics and petroleum geology of Kopet-Dagh region, northern Iran. Unpublished PHD thesis, Petroleum Geology Section, Imperial College, London, 316 pp.
Afshar Harb, A (1994) Geology of Kopeh Dagh. Geological Survey of Iran, 275 p.
Al-Baldawi, B. A., & Nasser, M. E (2013) Investigation of reservoir flow unit and rock types of Mishrif Formation in Amara Oil Field and prediction of performance. In Proceeding of the 2nd International Conference on Iraq Oil Studies, 11:10-24.
Robert, M., Alexandra, M., Jean Letouzey, Mohammad, A (2014) Kavoosi, Sharham Sherkati, Carla Müller, Jaume Vergés, and Abdollah Aghababaei. "Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology, 57: 68-87.
Amaefule, J. O., Altnubay, M., Tiab, D., Kersey, D. G., Keeland, D. K (1993) Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in un-cored intervals/wells. Society of Petroleum Engineers, SPE 26436: 1–16.
Aminul Islam, M (2009) Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35: 89-100.
Berberian, M. and King, G. C. P (1981) Toward a paleogeography and tectonic evolution of Iran. Canadian Journal Earth Sciences, 18: 210- 265.
Dunham, R (1962) Classification of carbonate rocks according to depositional – texture. In: Ham W.E. (Eds.), Classification of Carbonate Rocks. American Association of Petroleum Geologist Memoir, 1: 108–121.
El-ghali, M. A. K., Mansurbeg, H., Morad, S., AL-Aasm, I., Ramseyer, K (2006) Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq basin, SW Libya. Sedimentary Geology, 190: 323-351.
Elmore, R. D., Engel, M., Crawford, L., Nick, K., Imbus, S. & Sofer, Z (1987) Evidence for a relationshipbetween hydrocarbons and authigenic magnetite, Nature, 325: 428-430.
Embry, A. F., Klovan, J. E (1971) A late Devonian reef tract on northeastern Banks Island Northwest Territories. Bulletin of Canadian Petroleum Geology, 19: 730–781.
Flugel, E (2010) Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin, 984 p.
Folk, R. L (1974) Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, 170 p.
Gluyas, J., Garland, C., Oxtoby, N. H., and Hogg, A. J. C (2000) Quartz cement: The Miller’s tale, in Worden, R.H., and Morad, S., eds., Quartz cementation in sandstones. Special Publication of the International Association of Sedimentologists: Oxford, UK, Blackwell, 29: 1–20.
Gunter, G. W., Finneran, J. M., Hartmann, D. J., & Miller, J. D (1997) Early determination of reservoir flow units using an integrated petrophysical method. In SPE annual technical conference and exhibition. OnePetro.
Hemond, C (2009) Sediment geochemistry and tectonic setting: Application of discrimination diagrams to early stages of intracontinental rift evolution, with examples from the Okavango and Southern Tanganyika rift basins. Journal of African Earth Sciences, 53: 33-44.
Hendry, J. P., Trewin, N. H (1995) Authigenic quartz microfabrics in Cretaceous turbidites; evidence for silica transformation processes in sandstones. Journal of Sedimentary Research, 65 (2a): 380-392.
Honarmand, J., Amini, A (2017) Association of the flow units with facies distribution, depositional sequences, and diagenetic features: Asmari Formation of the Cheshmeh-Khush Oil Field, SW Iran. Journal of Petroleum Science and Technology, 7(3): 47–66.
Izadi, M., Ghalambor, A (2013) New approach in permeability and hydraulic-flow-unit determination. Society of Petroleum Engineers, 16(3): 257–264.
Jamali, A (2011) Biostratigraphy and lithostratigraphy of the Lower Cretaceous deposits in the east of Kopet-Dagh. Unpublished PhD thesis. University of Shahid Beheshti. p. 448.
Kadkhodaie-Ilkhchi, A., Kadkhodaie-Ilkhchi, R (2018) A review of reservoir rock typing methods in carbonate reservoirs: relation between geological seismic, and reservoir rock types. Iranian Journal of Oil & Gas Science and Technology, 7(4): 13–35.
Kim, J. C., Lee, Y. I., Hisada, K (2007) Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic–Early Cretaceous), central Japan. Sedimentary Geology, 195: 183–202.
Kordi, M., Turner, B., Salem, A. M. K (2011) Linking diagenesis to sequence stratigraphy in fluvial and shallow marine sandstones: Evidence from the Cambriane Ordovician lower sandstone unit in southwestern Sinai, Egypt. Marine and Petroleum Geology, 28: 1554-1571.
Love, L. G (1967) Early diagenetic iron sulphide in recent sediments of the Wash (England). Sedimentology, 9(4): 327-352.
Mack, G. H (1978) The survivability of labile light‐mineral grains in fluvial, aeolian and littoral marine environments: The Permian Cutler and Cedar Mesa Formations, Moab, Utah, Sedimentology, 25: 587-604.
Mavyev, N. C (1986) Catagenesis of petroleum-bearing Mesozoic and upper Paleozoic formations of the southwestern Turan plate [Katagenez neftegazonosnykh mezozoyskikh I verkhnepaleozoyskikh formatsiy yugo-zapada Turanskoy plity]: Ashkhabad, Turkmenistan, Ylym, 218 p.
Mehrabi, H., Ranjbar-Karami, R., & Roshani-Nejad, M (2019) Reservoir rock typing and zonation in sequence stratigraphic framework of the Cretaceous Dariyan Formation, Persian Gulf. Carbonates and Evaporites, 34(4): 1833-1853.
Miall, A. D (2013) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Springer.
Moradi, M., Rahimpour-Bonab, H., Kadkhodaie, A., & Chehrazi, A (2022) Analysis and distribution of Hydraulic flow unit and Electrofacies in the framework of sedimentary sequences in one of the gas fields in northeastern Iran. Journal of Petroleum Research, 32(123): 3-18.
Moussavi-Harami, R., Brenner, R. L (1990) Lower Cretaceous (Neocomian) fluvial deposits in eastern Kopet-Dagh basin, northeastern Iran. Cretaceous Research, 11(2): 163-174.
Moussavi-Harami, R., Brenner, R. L (1992) Geohistory analysis and petroleum reservoir characteristics of Lower Cretaceous (Neocomian) sandstones, eastern Kopet-Dagh Basin, northeastern Iran. AAPG bulletin, 76(8): 1200-1208.
Moussavi-Harami, R., Brenner, R. L (1993) Diagenesis of non‐marine petroleum reservoirs: The Neocomian (Lower Cretaceous) Shurijeh Formation, Kopet‐Dagh Basin, NE Iran. Journal of Petroleum Geology, 16(1): 55-72.
Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Brenner, R., Mortazavi, M (2009) Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data. Cretaceous Research, 30(5): 1146-1156.
Nichols, G (2009) Sedimentology and Stratigraphy. Wiley-Blackwell: Chichester, 419 p.
Noori Al-Jawad, S., Saleh, A. H., Al-Dobaj, A., Al- Rawi, Y. T (2014) Reservoir flow unit identification of the Mishrif Formation in north Rumaila Field. Arabian Journal of Geosciences, 7: 2711–2728.
Pemberton, G, Gingeras, M (2005) Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89(11): 1493-1517.
Pettijohn, F. J., Potter, P. E., and Siever, R (1987) Sand and Sandstone. 2nd Edition, Springer-Verlag, New York, 553 p.
Poursoltani, M. R., Moussavi-Harami, R. and Gibling, M. R (2007) Jurassic deepwater fans in the Neo-Tethys Ocean, the Kashafrud Formation of the Kopet-Dagh Basin Iran. Sedimentary Geology, 198: 53–74.
Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., lzadi-Mazidi, E (2012) Flow unit distribution and reservoir modelling in Cretaceous carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran. Journal of Petroleum Geology, 35(3): 213–236.
Stampfli, G., Borel, G. D (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196: 17-33.
Tiab, D., Donaldson, E. C (2004) Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. 2nd Edition, Elsevier, Gulf Professional Publishing, 915 p.
Tucker, M. E (2009) Sedimentary petrology: an introduction to the origin of sedimentary rocks. Third edition, 261 pp.
Waugh, B (1971) Formation of quartz overgrowths in the Penrith Sandstone (Lower Permian) of northwest England as revealed by scanning electron microscopy. Sedimentology, 17: 309–320.
Worden, R. H., & Morad, S (2000) Quartz cementation in oil field sandstones: a review of the key controversies. Quartz cementation in sandstones, 29: 1-20.
Worden, R. H., & Burley, S. D (2003) Sandstone diagenesis: the evolution of sand to stone. Sandstone diagenesis: Recent and ancient, 4: 3-44.