تلفیق مطالعات زمین شناسی و پتروفیزیکی به منظور ارزیابی ناهمگنی های مخزنی در توالی‌های رسوبی کربناته: مطالعه موردی از مخازن پرمین- تریاس خلیج فارس

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشکده زمین‌شناسی، دانشگاه تهران، تهران، ایران

2 استادیار دانشکده زمین‌شناسی، دانشکدگان علوم، دانشگاه تهران، تهران، ایران

3 استاد دانشکده زمین‌شناسی، دانشکدگان علوم، دانشگاه تهران، تهران، ایران

4 استادیار پژوهشکده علوم‌زمین، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

در این پژوهش بر اساس تلفیق داده و اطلاعات بدست آمده از مغزه­های حفاری و برش­های نازک میکروسکوپی به بررسی و ارزیابی ناهمگنی­های مخزنی در توالی­های کربناته دالان بالایی و کنگان پرداخته شده است. هدف از این پژوهش تعیین گونه­های سنگی مخزنی، واحدهای جریانی هیدرولیکی و زون­بندی مخزنی بر اساس روش لورنز (SMLP) و بررسی ارتباطات موجود بین این مفاهیم با جایگاه­های سکانسی توالی­های مورد نظر می­باشد. بر اساس اطلاعات در دسترس، تعداد 7 گونه سنگی مخزنی و 8 واحد جریانی هیدرولیکی با استفاده از مفهوم نشانگر زون جریان تعیین شده است. همچنین بر اساس روش لورنز، تعداد 15 زون مخزنی و غیرمخزنی در این توالی­ها شناسایی گردید که هر زون از یک یا چند گونه سنگی با ویژگی­های سنگ­شناسی و پتروفیزیکی تقریبا مشابه تشکیل شده است. گونه­ سنگی PRT1 شامل انیدریت متراکم، پایین­ترین کیفیت مخزنی و گونه سنگی PRT7 شامل پکستون/گرینستون­های دولومیتی شده بهترین کیفیت مخزنی را در سازندهای مورد مطالعه دارا می­باشند. سایر گونه­های سنگی بنابر رخساره و فرآیند­های دیاژنزی غالب، کیفیت مخزنی متوسط تا ضعیفی دارند. سازند کنگان در توالی­های مورد مطالعه به 5 زون تقسیم می­شود که شامل 1 زون تله­ای و 1 زون مخزنی در واحد K1 و 2 زون مخزنی و 1 زون سرعت در واحد K2 می­باشد. همچنین تعداد 10 زون نیز در سازند دالان بالایی (1 زون تله­ای، 1 زون مخزنی، 1 زون سرعت و 1 زون سدی در واحد K3 و 4 زون مخزنی و 2 زون تله­ای در واحد K4) شناسایی و تفکیک شده است. ناهمگنی­های کوچک مقیاس و بزرگ مقیاس در توالی­های مخزنی مورد مطالعه بر مبنای تلفیق روش­های پتروفیزیکی و مطالعات پتروگرافی مورد بررسی قرار گرفته و جایگاه سکانسی آن­ها مشخص گردیده است. در نتیجه مشخص گردید که بخش­های غیرمخزنی مخازن دالان بالایی و کنگان در سیستم تراکت RST سکانس  UDS3و بخش بالایی سیستم تراکت RST سکانس KS1 متمرکز شده­اند و افق­های مخزنی خوبی در سکانس­های رسوبیUDS4 ، بخش میانی و بالایی سکانسKS2  و ابتدای سکانس KS1 قابل مشاهده است.

کلیدواژه‌ها


عنوان مقاله [English]

Integration of geological and petrophysical studies for evaluation of reservoir heterogeneities in carbonate sequences: case study from Permian–Triassic reservoirs in the Persian Gulf

نویسندگان [English]

  • M. H. Dahaghin 1
  • H. Mehrabi 2
  • H. Rahimpour-Bonab 3
  • B. Beiranvand 4
1 M. Sc. in sedimentology and Sedimentary Petrology, College of Science, University of Tehran, Tehran, Iran
2 Assist. Prof., School of Geology, College of Science, University of Tehran, Tehran, Iran
3 Prof., School of Geology, College of Science, University of Tehran, Tehran, Iran
4 Assist. Prof., Geosciences Division, Research Institute of Petroleum Industry, Tehran, Iran
چکیده [English]

This study integrates the results of petrographic studies of core samples and thin sections with petrophysical data for the evaluation of heterogeneities in the distribution of reservoir properties in the Upper Dalan and Kangan formations. Reservoir rock types, hydraulic flow units, and reservoir zonation of these formations are determined in a sequence stratigraphic framework. Accordingly, 7 rock types and 8 hydraulic flow units are defined using the petrographic evidence and flow zone indicator values, respectively. Based on the Lorenz approach, 15 reservoir, speed, barrier, and baffle zones have been differentiated. Among the defined rock types, PRT1 (compacted anhydrite) has lowest reservoir quality, and PRT7 (dolomitized packstone and grainstone) has highest reservoir quality. A combination of depositional facies characteristics and diagenetic alterations controlled the reservoir properties in these formations. There are one reservoir and one baffle zone in the K1 unit, two reservoir zones and one speed zone in the K2, one reservoir, baffle, barrier, and speed zone in the K3, and three reservoirs, two baffle, and one barrier zone in the K4 unit. All macroscopic and microscopic heterogeneities are determined in sequence stratigraphic framework. Results showed that non-reservoir units of Permian–Triassic formations are concentrated within the RSTs (regressive systems tracts) of UDS3 and KS1 sequences. On the other hand, reservoir zones correspond to the RST of KS2 and the UDS4 sequences.

کلیدواژه‌ها [English]

  • Hydraulic flow units
  • Reservoir zonation
  • Sequence stratigraphy
  • Dalan and Kangan
  • Persian Gulf
رحیم­پوربناب، ح.، علی­اکبردوست، ا (1392) تعیین رخساره­های مخزنی در سنگ­های کربناته بر اساس مغزه­های تزریق جیوه و انواع تخلخل در سازندهای دالان و کنگان، میدان گازی پارس جنوبی، دوفصلنامه رسوب­شناسی کاربردی، دوره 1، شماره 2، ص 1-15.
Aali, J., Rahimpour-Bonab, H., Kamali, M. R (2006) Geochemistry and origin of the worlds largest gas field from Persian gulf, Iran. J. Petrol. Sci. Eng, 50: 161–175.
Abbaszadeh, M., Fujii, H., Fujimoto, F., others (1996) Permeability prediction by hydraulic flow units-theory and applications, SPE, 11: 263–271.
Ahr, W. M (2008) Geology of carbonate reservoirs John Wiley & Sons, Inc., Publication, 296 p.
Al-Ajmi, F. A., and Stephen, A. H )2000) Permeability Estimation Using Hydraulic Flow Units in a Central Arabia Reservoir, SPE Annual Technical Conference and Exhibition, Dallas, Texas.
Al-Husseini, M (2007) Iran’s crude oil reserves and production. GeoArabia, 12 (2): 69–94.
Alsharhan, A. S (2006) Sedimentological character and hydrocarbon parameters of the Middle permian to Early Triassic Khuff formation United Arab Emirates. GeoArabia, 11: 121–158.
Amaefule, J. O., Altnubay, M., Tiab, D., Kersey, D. G., Keeland, D. K (1993) Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in un-cored intervals/wells. Society of Petroleum Engineers, SPE, 26436: 1–16.
Carmen, P .C )1937( Fluid Flow through Granular Beds. Trans. AIChE, 15: 150-166.
Chopra, A. K., Stein, M. H., & Ader, J. C (1989) Development of reservoir descriptions to aid in design of EOR projects. SPE reservoir engineering, 4(02): 143-150.
Dunham, R. J (1962) Classification of Carbonate Rocks According to Depositional Textures.
Edgell, H. S (1996) Salt tectonism in the Persian Gulf basin. Geol. Soc. London, Spec. Publ, 100: 129–151.
Edgell, H. S (1977) The Permian system as an oil and gas reservoir in Iran, Iraq and Arabia. Proc. Second Iranian Geological Symposium, Tehran, pp. 161–201. Ehrenberg, S.N., 2006. Porosity destruction in carbonate platforms. J. Petrol. Geol, 29: 41–52.
Ehrenberg, S. N., Nadeau, P. H., Agrawi, A. A. M (2007) A comparison of Khuff and Arab reservoir potential throughout the Middle East. Am. Assoc. Petrol. Geol. Bull, 91: 275–286.
Embry, A. F (2002) Transgressive-regressive (TR) sequence stratigraphy. In: Gulf Coast SEPM Conference Proceedings, 151–172. Houston.
Embry, A. F., Klovan, J. E (1971) A late Devonian reef tract on northeastern Banks Island. NWT. Bull. Can. Pet. Geol, 19: 730–781.
Enayati-Bidgoli, A., Navidtalab, A )2020( Effects of progressive dolomitization on reservoir evolution: a case from the Permian–Triassic gas reservoirs of the Persian Gulf, offshore Iran. Mar. Petrol. Geol., 104480
Enayati-Bidgoli, A. H., Rahimpour-Bonab, H )2016( A geological based reservoir zonation scheme in a sequence stratigraphic framework: a case study from the Permo-Triassic gas reservoirs, Offshore Iran. Mar. Petrol. Geol. 73: 36–58.
Enayati-Bidgoli, A. H., Rahimpour-Bonab, H., Mehrabi, H )2014( Flow unit characterisation in the permian-triassic carbonate reservoir succession at South Pars gasfield, offshore Iran. J. Petrol. Geol, 37: 205–230.
Esrafili-Dizaji, B., Rahimpour-Bonab, H )2009( Effects of depositional and diagenetic characteristics on carbonate reservoir quality: a case study from the South Pars gas field in the Persian Gulf. Petrol. Geosci, 15: 325–344.
Esrafili-Dizaji, B., Kiani Harchegani, F., Rahimpour-Bonab, H., Kamali, M. R (2013) Controls on reservoir quality in the early triassic Kangan formation, Iran. In: P ̈oppelreiter, M. (Ed.), Permo-Triassic Sequence of the Arabian. EAGE.
Esrafili-Dizaji, B., Rahimpour-Bonab, H (2014) Generation and evolution of oolitic shoal reservoirs in the Permo-Triassic carbonates, the South Pars Field, Iran. Facies, 60: 921–940.
Flügel, E (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application.
Gomes, J. S., Ribeiro, M. T., Strohmenger, C. J., Naghban, S., Kalam, M. Z (2008) Carbonate reservoir rock typing-the link between geology and SCAL. Abu Dhabi International Petroleum Exhibition and Conference.
Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M., and Monibi, S (2006) Upper Dalan/Kangan Formation between the Zagros Mountains and offshore Fars: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia, 11 (2): 75-176.
Kadkhodaie, A., Amini, A )2009( A fuzzy logic approach to estimating hydraulic flow units from well log data: A case study from the Ahwaz oilfield, South Iran. Journal of Petroleum Geology, 32(1): 1-12.
Koehrer, B., Aigner, T., Forke, H., P ̈oppelreiter, M (2012) Middle to upper Khuff (sequences KS1 to UDS4) outcrop-equivalents in the Oman mountains: grainstone architecture on a subregional scale. GeoArabia, 17: 59–104.
Koehrer, B. S., Heymann, C., Prousa, F., Aigner, T (2010) Multiple-scale facies and reservoir quality variations within a dolomite body–outcrop analog study from the Middle Triassic, SW German Basin. Mar. Petrol. Geol, 27: 386–411.
Kozeny, J )1927( Uber Kapillare Leitung des Wassers im Boden, Stizurgsberichte,” Royal Academy of Science, Vienna, Proc. Class, 1 (136): 271-306.
Lorenz, M. O (1905) Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 9: 209–219.
Lucia, F. J (2007) Carbonate Reservoir Characterization: an Integrated Approach. Springer Science & Business Media.
Maglio-Johnson, T (2000) Petrophysical Definition ofFlow Units in a Deep-Water Sandstone, Lewis Shale, Wyoming. AAPG Search and Discovery, Article #90909.
Mehrabi, H., Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., and Esrafili-Dizaji, B (2015a) Impact of contrasting paleoclimate on carbonate reservoir architecture: Cases from arid Permo-Triassic and humid Cretaceous platforms in the south and southwestern Iran. Journal of Petroleum Science and Engineering, 126: 262-283.
Mehrabi, H., Mansouri, M., Rahimpour-Bonab, H., Tavakoli, V., Hassanzadeh, M (2016) Chemical compaction features as potential barriers in the Permian-Triassic reservoirs of Southern Iran. Journal of Petroleum Science and Engineering, 145: 95-113.
Mehrabi, H., Ranjbar-Karami, R., and Roshani-Nejad, M (2019) Reservoir rock typing and zonation in sequence stratigraphic framework of the cretaceous dariyan formation, Persian Gulf. Carbonates and Evaporites, 34(4): 1833-1853.
Nazemi, M., Tavakoli, V., Rahimpour-Bonab, H., Hosseini, M., Sharifi-Yazdi, M (2018) The effect of carbonate reservoir heterogeneity on Archie’s exponents (a and m), an example from Kangan and Dalan gas formations in the central Persian Gulf. J. Nat. Gas Sci. Eng, 59: 297–308.
Nurmi, R., Charara, M., Waterhouse, M., Park, R (1990) Heterogeneities in carbonate
reservoirs: detection and analysis using borehole electrical imagery. Geol. Soc. London, Spec. Publ, 48: 95–111.
Perotti, C. R., Bertozzi, G., Feltre, L., Rahimi, M., et al (2011) The Qatar-south fars arch development (arabian platform, Persian gulf): insights from seismic interpretation and analogue modelling. New Frontiers in Tectonic Research - at the Midst of Plate Convergence.
Pillevuit, A (1993) Les blocs exotiques du Sultanat d’Oman: ́evolution pal ́eog ́eographique d’une marge passive flexurale. Posamentire, H. W., Vail, P. R., 1988. Eustatic controls on clastic deposition ii—sequence and systems tract models. Sea-Level Changes. SEPM (Society for Sedimentary Geology), 125–154.
Porras, J. C., Barbato, R., Khazen, L (1999( Reservoir flow units: a comparison between three different models in the Santa Barbara and Pirital fields, North Monagas area, Eastern Venezuela basin. SPE 53671, Presented at Latin America Caribbean Pet. Eng. Conf., Caracas, Venezuela.
Rahimpour-Bonab, H (2007) A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. J. Petrol. Sci. Eng, 58: 1–12.
Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., Navidtalab, A., Mehrabi, H (2014) Appraisal of intra reservoir barriers in the Permo-Triassic successions of the central Persian gulf, offshore Iran. Geol. Acta, 12: 87–107.
Rahimpour-Bonab, H., Esrafili-Dizaji, B., and Tavakoli, V (2010) Dolomitization and anhydrite precipitation in Permo-Triassic carbonates at the South Pars gasfield, offshore Iran: Controls on reservoir quality. Journal of Petroleum Geology, 33: 43-66.
Rahimpour-Bonab, H., Mehrabi, H., Enayati-Bidgoli, A. H., Omidvar, M (2012) Coupled imprints of tropical climate and recurring emersions onreservoir evolution of a mid- Cretaceous carbonate ramp, Zagros Basin, SW Iran. Cretac. Res. 37: 15–34.
Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., Izadi-Mazidi, E (2012) Flow unit distribution and reservoir modeling in Cretaceous carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran. Journal of Petroleum Geology, 35:1–24.
Sharland, P. R., Archer, D. M., Casey, R. B., Davies, S.H., Hall, A.P., Heward, A.D., Horbury, A.D., Simmons, M.D (2001) Arabian Plate Sequence Stratigraphy, vol. 2. GeoArabia Spec. Publ.
Skalinski, M., Kenter, J. A. M (2015) Carbonate petrophysical rock typing: integrating geological attributes and petrophysical properties while linking with dynamic behaviour. Geol. Soc. London, Spec. Publ. 406: 229–259.
Soto, B. R., Garcia J. C., Torres F., and Perez G. S. (2001) Permeability Prediction Using Hydraulic Flow Units And Hybrid Soft Computing Systems, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana.
Szabo, F., Kheradpir, A (1978) Permian and triassic stratigraphy, zagros basin, south-west Iran. J. Petrol. Geol, 1: 57–82.
Tavakoli, V., Jamalian, M (2018) Microporosity evolution in Iranian reservoirs, Dalan and Dariyan Formations, the central Persian Gulf. Journal of Natural Gas Science and Engineering, 52: 155–165.
Tavakoli, V., Rahimpour-Bonab, H., Esrafili-Dizaji, B (2011) Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. Comptes Rendus Geoscience, 343: 55–71.
Tavakoli, V (2020) Microscopic heterogeneity. Carbonate Reservoir Heterogeneity. Springer, 17–51.
Tavakoli, V., Rahimpour-Bonab, H., Esrafili-Dizaji, B (2011) Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. Compt. Rendus Geosci, 343: 55–71.
Tavani, S., Parente, M., Vitale, S., Iannace, A., Corradetti, A., Bottini, C., Morsalnejad, D., Mazzoli, S (2018) Early Jurassic rifting of the Arabian passive continental margin of the Neo-Tethys. Field evidence from the Lurestan region of the Zagros fold-and- thrust belt, Iran. Tectonics, 37: 2586–2607.
Tavoosi-Iraj, P., Mehrabi, H., Rahimpour-Bonab, H., Ranjbar-Karami, R (2021) Quantitative analysis of geological attributes for reservoir heterogeneity assessment in carbonate sequences; a case from Permian-Triassic reservoirs of the Persian Gulf. J Petrol Sci Eng, 200: 108356.
Tiab, D., Donaldson, E. C (2015) Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Gulf professional publishing.
Zeller, M., Koehrer, B., Adams, E. W., P ̈oppelreiter, M., Aigner, T (2011) Near well-scale heterogeneities in A Khuff outcrop equivalent (saiq plateau, Al jabal Al akhdar, sultanate of Oman). J. Petrol. Geol, 34: 241–260.
Ziegler, M. A (2001) Late permian to holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6: 445–504.