Agbi, I., Ozibo, B., Newton, R (2015) Pyrite framboid size distribution of the Grey Shales (Yorkshire UK) as an indication of redox conditions. IOSR Journal of Applied Geology and Geophysics, 3: 36–42.
Ardakani, O. H., Chappaz, A., Sanei, H., Mayer, B. (2016) Effect of thermal maturity on remobilization of molybdenum in black shales. Earth and Planetary Science Letters, 449: 311–320.
Benning, L. G., Wilkin, R. T., Kornhauser, K. O (1999) Sulfate-reducing bacteria and mackinawite stability. In: Ninth Ann. V.M. Goldschmidt Conf., p.26. LPI Contr. No. 971, Houston.
Berner, R. A (1984) Sedimentary pyrite formation. Geochimica Cosmochimica Acta, 48: 605–615.
Boesen, R. A., Postma, D. (1988) Pyrite formation in anoxic sediments of the Baltic. American Journal of Science, 288: 575–603.
Bond, D. P. G (2010) Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of American Bulletin, 122: 1265–1279.
Canfield, D. E (1989) Reactive iron in marine sediments. Geochimica Cosmochimica Acta, 51: 645–659.
Carmichael, S. K., Waters, J. A., Suttner, T. J., Kido, E., DeReuil, A. A (2014) A new model for the Kellwasser Anoxia Events (Late Devonian): Shallow water anoxia in an open oceanic setting in the Central Asian Orogenic Belt. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 394 -403.
Chang, J., Li, Y., Lu, H (2022) The Morphological Characteristics of Authigenic Pyrite Formed in Marine Sediments. Journal of Marine Science and Engineering, 10: 1533.
Chen, C., Mu, CL., Zhou, K. K., Liang, W., Ge, XY., Wang, X. P., Wang, Q. Y., Zheng, B. S (2016) The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China. Marine Petroleum Geology, 76: 159–175.
Deng, T., Li, Y., Wang, Z., Yu, Q., Dong, S., Yan, L., Hu, W., Chen, B (2019) Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: implications for paleoweathering, provenance and tectonic setting. Marine and Petroleum Geology, 109: 698–716.
Duverger, A., Bernard, S., Viennet, J. C., Miot, J., Busigny, V (2021) Formation of pyrite spherules from mixtures of biogenic FeS and organic compounds during experimental diagenesis. Geochemistry, Geophysics, Geosystems, 22: e2021GC010056.
Gallego-Torres, D., Reolid, M., Nieto-Moreno, V., Martínez-Casado, F. J (2015) Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian Oceanic Anoxic Event in Southiberian Palaeomargin. Sedimentary Geology, 330: 59–73.
Gholamalian, H (2006) Biostratigraphy of Late Devonian Sequence in Hutk section (North of Kerman) Based on Conodonts. Geosciences Scientific Quarterly Journal (Ulum-I Zamin), 15 (59): 94–101(in Persian).
Hallbauer, D. K (1986) The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium, and carbonaceous matter. In Mineral Deposits of Southern AJi'ica (ed. C. R. Anhaeusser and S. Maske), 731-752. Geological Society of South Africa.
Hashmie, A., Rostamnejad, A., Nikbakht, F., Ghorbanie, M., Rezaie, P., Gholamalian, H (2016) Depositional environments and sequence stratigraphy of the Bahram Formation (middle–late Devonian) in north of Kerman, south-central Iran. Geoscience Frontiers, 7(5): 821–834.
He, J., Ding, W., Jiang, Z., Jiu, K., Li, A., Sun, Y (2017) Mineralogical and chemical distribution of the Es3L oil shale in the Jiyang Depression, Bohai Bay Basin (E China): Implications for paleoenvironmental reconstruction and organic matter accumulation. Marine and Petroleum Geology, 81: 196–219.
Hu, G., Yang, R., Wang, L., Hu, W., Cao, J (2019) Hydrocarbon potential and depositional environment of the Lower Cretaceous black mudstones and shales in the coastal Guangdong Province, China. Marine and Petroleum Geology, 99: 92–106.
Jones, B., Manning, D. A (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111 (1–4): 111–129.
Khan, D., Qiu, L., Liang, C., Mirza, K., Rehman, S. U., Han, Y., Hannan, A., Kashif, M., Louis Kra, K (2021) Genesis and distribution of pyrite in the Lacustrine Shale: evidence from the Es3x shale of the Eocene shahejie formation, Zhanhua Sag, East China. ACS omega, 7 (1): 1244–1258.
Kimberley, M. M (1994) Debate about ironstone: Has solute supply been surficial weathering, hydrothermal convection, or exhalation of deep fluids? Terra Nova, 6: 116–132.
Li, Y., Fan, T., Zhang, J., Wei, X., Zhang, J (2015) Impact of paleoenvironment, organic paleoproductivity, and clastic dilution on the formation of organic-rich shales: a case study about the Ordovician-Silurian black shales, southeastern Chongqing, South China. Arabian Journal of Geosciences, 8(12): 10225–10239.
Lin, Q., Wang, J., Algeo, T. J., Sun, F., Lin, R (2016) Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379: 100–108.
Love, L. G., Amstutz, G. C (1966) Review of microscopic pyrite from the Devonian Chattanooga Shale and Rammelsberg Banderz. Fortschr. Mineral, 43: 273–309.
Machel, H. G (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—Old and new insights. Sedimentary Geology, 140: 143–175.
Marynowski, L., Rakocinski, M., Zaton, M (2007) Middle Famennian (Late Devonian) interval with pyritized fauna from the Holy Cross Mountains (Poland): organic geochemistry and pyrite framboid diameter study. Geochemical Journal, 41(3): 187–200.
Mozer, A (2010) Authigenic pyrite framboids in sedimentary facies of the Mount Wawel formation (eocene), King George Island, west Antarctica. Polish Polar Research: (3).
Ohfuji, H., Rickard, D (2005) Experimental syntheses of framboids—A review. Earth-Science Reviews, 71(3–4): 147–170.
Obmoto, H., Kakegawa, T., kowe, D. R (1993) 3.4-billion-yearold biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science, 262: 555–557.
Pisarzowska, A., Berner, Z. A., Racki, G (2014) Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite. Sedimentary Geology, 308: 18–31.
Rahiminejad, A. H., Zand-Moghadam, H., Mirshahani, M., Khajehzadeh, A (2022) Famennian inertinite-bearing marine shale facies as indicator of wildfire event in north of Gondwana. Historical Biology, 34(9): 1752–1768.
Rimmer, S. M., Thompson, J. A., Goodnight, S. A., Robl, T. L (2004) Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125–154.
Rudmin, M., Banerjee, S., Abdullayev, E., Ruban, A., Filimonenko, E., Lyapina, E., Kashapov, R., Mazurov, A (2020) Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: assessment of formation processes and relationship with regional and global earth processes. Journal of Palaeogeography, 9: 1–21.
Sassano, G. P., Schrijver K (1989) Framboidal pyrite: Earlydiagenetic, late-diagenetic, and hydrothermal occurrences from Acton Vale quarry, Cambro-Ordovician, Quebec. American Journal of Science, 289: 167–179.
Sawlowicz, Z (1993) Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau, 82: 148–156.
Sawlowicz, Z (2000) Framboids: From Their Origin to Application. Prace Mineralogiczne, 88: 1–80.
Schieber, J., Baird, G (2001) On the origin and significance of pyrite spheres in Devonian black shales of North America. Journal of Sedimentary Research, 71(1): 155–166.
She, Z. B., Zhang, Y. T., Liu, W., Song, J., Zhang, Y., Li, C., Strother, P., Papineau, D (2016) New observations of ambient inclusion trails (AITs) and pyrite framboids in the Ediacaran Doushantuo Formation, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 374–388.
Wang, P. K., Huang, Y. J., Wang, C. S., Feng, Z. H., Huang, Q. H (2013) Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 125–136.
Wang, C., Wang, Q., Chen, G., He, L., Xu, Y., Chen, L., Chen, D (2017) Petrographic and geochemical characteristics of the lacustrine black shales from the Upper Triassic Yanchang formation of the Ordos Basin, China: implications for the organic matter accumulation. Marine and Petroleum Geology, 86: 52–65.
Weise, R. G., Fyfe, W. S (1986) Occurrences of iron sulfides in Ohio coals. International Journal of Coal Geology, 6: 251–276.
Wendt, J., Kaufmann, B., Belka, Z., Farsan, N., Karimi Bavandpur, A (2002) Devonian/ lower carboniferous stratigraphy, facies patterns and paleogeography of Iran, Part I. Southeastern Iran. Acta Geologica Polonica, 52 (2): 129–168.
Wignall, P. B., Newton, R (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298: 537–552.
Wignall, P. B., Bond, D. P. G., Kuwahara, K., Kakuwa, Y., Newton, R., Poulton, S. W (2010) An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change, 71: 109–123.
Wignall, P. B., Newton, R., Brookfield, M. E (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183–188.
Wilkin, R. T., Arthur, M. A (2001) Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochimica et Cosmochimica Acta, 65: 1399–1416.
Wilkin, R. T., Arthur, M. A., Dean, W. E (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth and Planetary Science Letters, 148: 517–525.
Wilkin, R. T., Barnes, H. L (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2): 323–339.
Wilkin, R., Barnes, H., Brantley, S (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60: 3897–3912.
Wilmsen, M., Fursich, F. T., Seyed-Emami, K., Majidifard, M. R (2009) An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. In: Brunet MF, Wilmsen M, Granath JW, editors. South Caspian to central Iran basins. Geological Society of London Special Publication, 312: 323–344.
Zatón, M., Marynowski, L., Szczepanik, P., Bond, D.P.G., Wignall, P.B (2008) Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian–Bathonian) clays of the Polish Jura (south-central Poland). Facies, 55: 103–114.
Zhang, L., Xiao, D., Lu, S., Jiang, S., Lu, S (2019) Effect of sedimentary environment on the formation of organic-rich marine shale: insights from major/trace elements and shale composition. International Journal of Coal Geology, 204: 34–50.