بررسی ژئوشیمیایی و تعیین خاستگاه نهشته‌های پادگانه‌ای رودخانه‌ قُلیان در منطقه قالیکوه لرستان، زاگرس مرتفع

نویسندگان

1 کارشناس ارشد عملیات زمین‌شناسی، مدیریت اکتشاف، شرکت ملی نفت ایران، تهران، ایران

2 رئیس اداره سیستم‌های هیدروکربنی، مدیریت اکتشاف، شرکت ملی نفت ایران، تهران، ایران

3 رئیس مطالعات اداره ژئوشیمی، مدیریت اکتشاف، شرکت ملی نفت ایران، تهران، ایران

چکیده

منطقه قالیکوه لرستان به دلیل گسترش شیل­های‌نفتی (نهشته‌های ژوراسیک‌میانی-کرتاسه‌پیشین) در زمین‌شناسی ایران بسیار حائز اهمیت می‌باشد. رودخانه قُلیان در بستر این نهشته‌ها جریان دارد. به منظور بررسی ژئوشیمی عنصری، تعیین خاستگاه و بررسی ارتباط غلظت عناصر با مقدار ماده آلی، تعداد 15نمونه از رسوبات پادگانه‌ای رودخانه قُلیان و 15نمونه از شیل­های‌نفتی اطراف برداشت و مورد آنالیز پتروگرافی و ژئوشیمیایی قرار گرفت. نتایج نشان داد بیشترین تهی‌شدگی اکسیدهای اصلی در رسوبات به دلیل به تحرک زیاد Na طی فرایند هوازدگی شیمیایی و دگرسانی‌های ثانویه مربوط به Na2O است و غنی‌شدگی فقط نسبت به CaO وجود دارد. غنی‌شدگی نسبت به عناصر جزئی Sb، As، Ni و V مربوط به شیل‌ها و Sr با پراکندگی کانی­های‌رسی و لایه‌های آهکی و pH قلیایی محیط مرتبط است و تهی‌شدگی Rb پیامد شکسته‌شدن فلدسپارها در دگرسانی می‌باشد. عناصر Nb و Zr در کانی­های ‌رسوبی به صورت فرعی وجود دارند. خاستگاه عناصر جزئی و خاکی‌کمیاب مرتبط با جایگاه تشکیل، هوازدگی در نهشته‌ها و میزان کل‌کربن‌آلی موجود در شیل­های‌نفتی پراکنده در منطقه است. نمونه‌ سنگ‌های آواری در محدوده لیتارنایت، آرکوز تا شیل قرار گرفته‌اند که مرتبط با حاشیه فعال قاره‌ای و برخوردی هستند. خاستگاه تشکیل نهشته‌ها حاکی از شرایط آب و هوایی خشک با رسیدگی شیمیایی کم است و با توجه به نسبت Th/U رسوبات از سنگ‌منشاء با کمترین هوازدگی یا از موادی با کمترین حمل و نقل- رسوب‌گذاری مشتق شده‌اند. میزان اندیس PIA  و ICV  نمونه‌ها نشان از تأثیر کم هوازدگی بر رسوبات مرتبط با محیط­های زمین‌ساختی فعال می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemical investigation and determination of the origin of fluvial terrace deposits of Qolyan River in Qalikuh region of Lorestan, Zagros high

نویسندگان [English]

  • A. S. Hoseini 1
  • M. Rashidi 2
  • M. Daryabandeh 3
1 M. Sc, Geological Operations, Exploration Management, National Iranian Oil Company, Tehran, Iran
2 Head of Hydrocarbon Systems Department, Exploration Management, National Iranian Oil Company, Tehran, Iran
3 Head of Geochemistry Studies Department, Exploration Management, National Iranian Oil Company, Tehran, Iran
چکیده [English]

Qalikuh region of Lorestan is very important in the geology of Iran due to the spread of oil shales deposits. The Qolyan River flows in the bed of these deposits. In order to investigate the elemental geochemistry, to determine the origin and to investigate the relationship between the concentration of elements and the amount of organic matter, 15samples from the fluvial terrace sediments of the Qolyan River and 15samples from the surrounding oil shales were collected and subjected to petrographic and geochemical analysis. The results showed that the most depletion of main oxides in sediments is related to Na2O and there is enrichment only in relation to CaO. Enrichment of minor elements Sb, As, Ni, V related to shales and Sr is related to the dispersion of clay minerals and lime layers. The depletion of Rb is the consequence of feldspars breaking in process of alteration. Nb, Zr elements are present in sedimentary minerals in minor form. The origin of minor and rare earth elements is related to the place of formation, weathering in the deposits and the amount of total organic carbon in the oil shales scattered in the region. The samples are in the range of litharenite, arkose to shale, which are related to the environments of active continental margin and collisional. According to the Th/U ratio, the sediments were formed from source rocks with the least weathering. The amount of PIA and ICV index of the samples shows the effect of low weathering on sediments related to active tectonic environments.

کلیدواژه‌ها [English]

  • Qolyan River
  • Sedimentary geochemistry
  • Oil shales
  • Qalikuh
  • Origin of sediments
Aghaei-Kerigh, M., Raghimi, M., Shamanian, G., Gholipour, M (2011) The effects of acid drainage in formation of environmental minerals (secondary minerals) in Galand-rud coal mines and waste materials of Vatani coal washing, Mazandaran province, Iranian Journal of Crystallography and Mineralogy, 19 (2): 325-338.
Ahankoub, M., Keyvani, E (2023) Geology and geochemistry phosphate deposite in Lordegan, south of Chahar mahal and Bakhtiyari province. Journal of Environmental Science Studies, 8(1): 6041-6050. doi.org/10.22034/jess.2022.350061.1817.
Alipour, V., Abedini, A (2012) Behaviour of major, minor and trace elements (including REEs) during kaolinization processes at Zonouz deposit, northeast of Marand, East Azarbaidjan province. Journal of Economic Geology, 3(2): 231-249. doi.org/10.22067/econg.v3i2.11434.
Aubert, H., Pinta, M (1977) Development in Soil Science (Trace Elements in Soil). 7. doi.org/10.1017/S0016756800037572.
Cox, R., Lowe, D. R., Cullers, R. L (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. doi.org/10.1016/0016-7037 (95)00185-9.
Cullers, R. L (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191(4): 305-327. doi.org/10.1016/S0009-2541 (02)00133-X.
Das, B. K., Haake, B. G (2003) Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geosciences Journal, 7: 299-312.
Dill, H. G., Eberhard, E., Hartmann, B (1997) Use of variations in unit cell length, reflectance and hardness for determining the origin of Fe disulphides in sedimentary rocks. Sedimentary Geology, 107(3-4): 281-301. doi.org/10.1016/S0037-0738 (96)00031-0.
Ekosse, G (2001) Provenance of the Kgwakgwe kaolin deposit in Southeastern Botswana and its possible utilization. Applied clay science, 20(3): 137-152.
Emami, S. N (2022) The source determination of sediments due to weathering of igneous, sedimentary and metamorphic rocks using the geochemical behavior of some basic and rare metal elements. Geology, 11(4): 710-722.
Fedo, C. M., Wayne Nesbitt, H., Young, G. M (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924.
Fereidoni, M., Rashidi, M., Rashid Nejad, N., Lotfi, M (2015) Using geochemical studies to determine the correlation of trace elements and organic and mineral parameters in the oil shales of Qalikouh. Oil & Gas Exploration & Production, (131): 55-64 (in persian).
Fulignati, P., Gioncada, A., Sbrana, A (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic–hydrothermal system of Vulcano (Aeolian Islands, Italy). Journal of Volcanology and geothermal research, 88(4): 325-342. doi.org/10.1016/S0377-0273 (98)00117-6.
Herron, M. M (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5): 820-829.
Heštera, H., Pahernik, M., Zelić, B. K., Maljković, M. M (2023) The Unified Soil Classification System Mapping of the Pannonian Basin in Croatia using Multinominal Logistic Regression and Inverse Distance Weighting Interpolation. Rudarsko-geološko-naftni zbornik, 38 (3): 147-159.
Hosseinzadeh, S., FattahiI, M., Khanebad, M (2019) Geochemistry of quaternary deposits of the Kal-Shour River, Binalood. Researches in Earth Sciences, 10, 37 (1): 39-49. doi.org/10.52547/esrj.10.1.39.
Kalagari, A., Abedini, A., Najafzadeh, P (2012) Major and minor elements geochemistry of sandstones of Laloon Formation (lower Cambrian) in southwest of Mashhad, Iran. Advanced Applied Geology, 2(1): 55-68.
Khanehbad, M., Mousavi-Harami, S. R., Mahboubi, A (2012) Factors controlling the formation of silica and pyrite minerals in skeletal fragments in the Shishtu 2 Formation (Early Carboniferous), at Howz-e-Dorah area, southeast of Tabas. Iranian Journal of Crystallography and Mineralogy, 20(1): 141-152.
Khodakarami, L., Soffianian, A., Mirghafari, N., Afyuni, M., Golshahi, A (2012) Concentration zoning of chromium, cobalt and nickel in the soils of three sub-basin of the Hamadan province using GIS technology and the geostatistics.  
Knappe, A., Möller, P., Dulski, P., Pekdeger, A (2005) Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Geochemistry, 65(2): 167-189. doi.org/10.1016/j.chemer.2004.08.004.
Kurdi, M., Bushiri, A. R (2003) Recognize the clay minerals of Kozhdumi formation (Burgan sands) and their effect on the reservoir rock in the Persian Gulf. Scientific monthly oil and gas exploration and production. Oil & Gas Exploration & Production, (5): 16-17 (in persian).
Langmuir, D (2004) Issue paper on the environmental chemistry of metals. US Environmental Protection Agency.
Mahmoudi Qaraei, M. H., Kianpour, S, Mousavi-Harami, S. R., Mashreghi, M (2011) The formation of autogenic pyrite by geomicrobiology method in the laboratory and its application in sediment-Seas of Southeast Japan. Iranian Journal of Crystallography and Mineralogy, 18(4): 659-668. (in persian).
McGlinchey, D (2009) Characterisation of bulk solids. John Wiley and Sons. doi.org/10.1002/9781444305456.
McLennan, S. M (1993) Weathering and global denudation. The Journal of Geology, 101(2): 295-303. http://dx.doi.org/10.1086/648222.
McLennan, S. M (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4). doi.org/10.1029/2000GC000109.
Moallemi, S. A., Salehi, M. A., Zohdi, A (2017) Geochemistry of the Razak Formation sandstones, southeastern Zagros sedimentary basin: implications for tectonic setting, parent rocks and palaeoweathering. Scientific Quarterly Journal of Geosciences, 26(103): 265-286. doi.org/10.22071/gsj.2017.46608.
Mohammadi, A. S., Khalili, M., Mansouri Isfahani, M (2010) The effect of weathering on the mineralogy and geochemistry of granitoids of Dehno (northeast of Aligudarz).Iranian Journal of crystallography and mineralogy, 18(4): 601-614 (in persian).
National Iranian Oil Company-Exploration Management (2013) Geological report of Qalikuh oil shales (report).
Oghenekome, M. E., Chatterjee, T. K., van Bever Donker, J. M., Hammond, N. Q (2018) Geochemistry and weathering history of the Balfour sandstone formation, Karoo basin, South Africa: Insight to provenance and tectonic setting. Journal of African Earth Sciences, 147: 623-632.
Pakzad, H. R., Pasandi, M., Romiani, A., Kamal, M (2014) Distribution of Ni, Cr, Sr, Cu, and Zn in the Fine-Grained Sediments of Anzali Wetland. Environmental Sciences, 12(2).
Piper, D. Z (1974) Rare earth elements in the sedimentary cycle: a summary. Chemical geology, 14(4): 285-304.
Pourshaban, A., Yazdi, M., Adabi, M. H., Daryabandeh, M (2022) Factors affecting trace elements enrichment and its interaction with organic materials in Qalikouh oil shale. Applied Sedimentology, 9(18): 76-96 (in persian). doi.org/10.22084/psj.2021.23708.1275.
Price, J. R., Velbel, M. A (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical geology, 202(3-4): 397-416.
Rahiminejad, A. H., Zand-Moghadam, H (2023) Investigating the formation of pyrite framboids in the Upper Devonian marine black shales of southeast of Central Iran: an approach to evaluation of water oxygen level in paleoenvironments. Applied Sedimentology, 11 (22): 180-192 (in persian). doi.org/10.22084/psj.2023.27814.1395.
Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C., Hérail, G (2006) Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology, 226(1-2): 31-65. doi.org/10.1016/j.chemgeo.2005.08.010.
Rose, N. L., Boyle, J. F., Du, Y., Yi, C., Dai, X., Appleby, P. G., Yu, L (2004) Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China. Journal of Paleolimnology, 32: 41-51.
Roser, B. P., Korsch, R. J (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94 (5): 635-650. doi.org/10.1086/629071.
Roser, B. P., Korsch, R. J (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology, 67 (1-2): 119-139.
Salehi, M. A., Mazroei Sebdani, Z (2020) Trace and rare earth elements geochemistry of the Lower Cretaceous siliciclastic red beds in north east Isfahan: Implication for provenance and source rocks.  Applied Sedimentology, 7(14): 22-33 (in persian). doi.org/10.22084/psj.2019.3402.
Shahraki, M., Mahmudy Gharaie, M. H., Mousavi-Harami, S. R., Ahmadi, A (2016) Geochemistry of Streambed Sediments of Sarbaz River, South East of Iran: Determining Sediment Provenance and its Impact on Possible Environmental Pollution. Scientific Quarterly Journal of Geosciences, 25 (97): 237-250.
Smedley, P. L., Zhang, M., Zhang, G., Luo, Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 18(9): 1453-1477. doi.org/10.1016/S0883-2927 (03)00062-3.
Suttner, L. J., Dutta, P. K (1986) Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3): 329-345.
Taylor, S. R., McLennan, S. M (1985) The continental crust: its composition and evolution. doi.org/10.1002/gj.3350210116.
Tucker, M. E (1988). Techniques in sedimentology. Blackwell Scientific Publications.
Verma, S. P., Armstrong-Altrin, J. S (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355: 117-133. doi.org/10.1016/j.chemgeo.2013.07.014.