تحلیل و بررسی سنگ نگاری و زمین شیمی دولومیت های پرمین در برش قره داغ، جنوب دریاچه ارومیه

نویسندگان

1 دانشیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه ارومیه، ارومیه، ایران

2 دانش‌آموخته‌ی گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه ارومیه، ارومیه، ایران

چکیده

در این مطالعه بخش دولومیتی نهشته­های پرمین در برش قره­داغ، واقع در جنوب دریاچه ارومیه از منظر سنگ­نگاری و زمین­شیمی مورد مطالعه و بررسی شده است. تعداد 92 نمونه از برش موردنظر که دارای ضخامت 202 متر می­باشد، جمع­آوری شد. مطالعات سنگ­نگاری به وسیله میکروسکوپ پلاریزان و مطالعات زمین­شیمی بر مبنای آنالیز عنصری به روش AAS صورت گرفته است. مطالعات سنگ­نگاری براساس طبقه­بندی بافتی، طبقه­بندی انجام گرفته و برمبنای آن دو گروه کلی دولومیت­های اولیه (هم­زمان با رسوب­گذاری) و دولومیت­های ثانویه (پس از رسوب‌گذاری) منجر به شناسایی شده است. دولومیت­های اولیه شامل دولومیکرایت­ها (خیلی ریزبلور) و دولومیت­های ثانویه شامل اسپارایت­ها و دولومیت­های پرکننده حفرات می­باشد. مطالعات زمین­شیمی بر مبنای عناصر اصلی Mg و Ca و عناصر فرعی Fe, Mn, Sr, Na صورت گرفته است. با تلفیق نتایج حاصل از مطالعات سنگ­نگاری و آنالیز عنصری، محیط تشکیل دولومیت­های مورد مطالعه مشخص گردید. دولومیکرایت­ها در محیط­های بالای کشندی، اسپارایت­ها در محیط تدفینی کم­عمق و دولومیت‌های پرکننده حفرات تحت شرایط تدفین عمیق و توسط سیالات دولومیتی­ساز تشکیل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and investigation of petrography and geochemistry of Permian dolomites in Qaradagh section, south of Lake Urmia

نویسندگان [English]

  • A. Ciabeghodsi 1
  • Sh. Mehrabi 2
1 Assoc. Prof., Dept., of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
2 (graduated), Dept., of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
چکیده [English]

In this study, the dolomitic part of the Permian deposits in the Qaradagh section, located in the south of Lake Urmia, has been studied and investigated from the perspective of lithology and geochemistry. 92 samples were collected from the 202-meter-thick section. The petrographic studies were conducted by use of polarizing microscope, whereas the geochemical studies were accomplished using AAS method. The petrographic studies were carried out based on textural classification and based on that, two general groups of primary dolomites (at the same time as sedimentation) and secondary dolomites (after sedimentation) were identified. Primary dolomites include dolomicrites (very fine crystals) and secondary dolomites include sparites and dolomites filling holes. The geochemical studies are focused on main elements including Ca and Mg, and rare elements including Fe, Na, Si and Mn. Combining results from lithostratigraphic studies and elemental analysis, the formation environment of the studied dolomites concluded as follow: dolomicrites are deposited in supra-tidal to upper parts and inter-tidal zones, sparites are deposited in a shallow burial environment, and pore-filling dolomites are deposited in a deep burial environment by dolomitic fluids.

کلیدواژه‌ها [English]

  • Carbonate rocks
  • Petrography
  • Geochemical
  • Magnesium
  • Qaradagh
Abdi, A., Adabi M. H (2009) Dolomites petrography diagenesis analysis, probable Shahbazn-Asmari Formations boundary and facies based on dolomicrite geochemistry, petrographic evidences and statistical methods in Darabi Section (Southwest Iran). Stratigr Sedimentology Res, 25(1): 81–100.
Adabi, M. H (2009) multistage dolomitization of upper Jurassic Muzduran Formation, Kopet-Dagh basin, N. E. Iran: Crab. Eva, 24: 16-32. DOI:101007/BF03228054.
Bakha, J. K (2000) Dolomite: occurrence, evolution and economically important association: Earth Sci Reviews, 52: 1-81. DOI: 10.1016/S0012-8252(00)00022-2.
Borkhataria, R., Aigner, T., Pöppelreiter, M. C. & Pipping, J. C. P (2005) Characterisation of epeiric "LAYER-CAKE” carbonate reservoirs: Upper Muschelkalk (Middle Triassic), the Netherlands, Journal of Petroleum Geology, 28 (2): 15-42.
Cai, K. W., Liu, H. J., Zhou, H. Ch., Keeling, J., Glasmacher, U. A (2021) Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chemical Geology, 573: 120191.
Du, Y., Fan, T., Machel, H. G., and Gao, Z (2018) Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology, 91: 43-70.
El-Hefnawi, M. A., Mashaly, A. O., Shalaby, B. N. and Rashwan, M. A (2010) Petrography and geochemistry of Eocene limestone from Khashm Al-Raqaba area, El-Galala El-Qibliya, Egypt: Carbonates and Evaporites, 25: 193–202. DOI: 10.1007/s13146-010-0023-4.
Flügel, E (2004) Microfacies analysis of carbonate rocks: Analysis, interpretation and application, Springer Verlag, Berlin, 976 p. DOI: 10.1007/978-3-662-08726-8.
Gabriela Sara Guzzy, A., Gustavo Murillo, M., Dante Jaime Morán, Z., José Manuel Grajales, N., Ricardo Martínez, I. & Peter, S (2007) High-temperature dolomite in the Lower Cretaceous Cupido Formation, Bustamante Canyon, northeast Mexico: petrologic, geochemical and microthermometric constraints, Revista Mexicana de Ciencias Geológicas, 24: 131-149.
Geske, A., Zorlu, J., Richter, D. K., Buhl, D., Niedermayr, A., Immenhauser, A (2012) Impact of diagenesis and low-grade metamorphosis on isotope (δ 26 Mg, δ 13 C, δ 18 O and 87 Sr/86 Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem Geol, 332: 45–64. DOI: 10.1016/j.chemgeo.2012.09.014.
Gomez-Rivas, E. M., Corbella, J., Martín-Martín, S., Stafford, A., Teixell, P., Bons, A., Griera, and E., Cardellach (2014) Reactivity of dolomitizing fluids and Mg source evaluation of faultcontrolled dolomitization at the Benicàssim outcrop analogue (Maestrat Basin, E Spain): Marine and Petroleum Geology, 55: 26-42. DOI: 10.3997/2214-4609.201400912.
Gregg, J. M (1985) Regional epigenetic dolomitization in the Bon neterre Dolomite (Cambrian), southeastern Missouri. Geology, 13 (7): 503–506.
Gregg, J. M. and Shelton, K. L (1990) Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Research, 60: 549-562.
Győri, O., Haas, J., Hips, K., Lukoczki, G., Budai, T., Demény, A., Szőcs, E (2020) Dolomitization of shallow-water, mixed silicilastic-carbonate sequences The Lower Triassic ramp succession of the Transdanubian Range, Hungary. Sedimentary Geology, 395- 105549. DOI: 10.1016/j.sedgeo.2019.105549.
Hood, S. D., Nelson, C. S. & Kamp, P. J. J (2004) Burial dolomitisation in a non-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand, Sedimentary Geology, 172: 117-138. DOI: 10.1016/j.sedgeo.2004.08.005.
Jalilian, A. H (2017) Petrography, geochemistry and diagenetic history of Sefidar dolomite section (Upper Triassic) in Fars region, south of Iran, two quarterly journals of applied sedimentology, 5 (10): 81-96.
Jiang, L., Cai, C. F., Worden, R. H., Li, K. K., Xiang, L (2013) Reflux dolomitization of the Upper Permian Changxing Formation and theLower Triassic Feixianguan Formation, NESichuan Basin, China. Geofluids, 13 (2): 232-245.
Jin, Z. J., Zhu, D. Y., Hu, W. X., Zhang, X. F., Wang, Y. and Yan, X. B (2006) Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin. Acta Geologica Sinica, 80 (2): 245-253.
Jones, B (2005) Dolomite crystal architecture: genetic implications for the origin of the Tertiary dolostones of the Cayman Islands. J Sediment Res, 75(2): 177–189.
Jones, B (2007) Inside-out dolomite. J Sediment Res, 77 (7): 539–551.
Kirmaci, M. Z., & Akdag, K (2005) Origin of dolomite in the Late Cretaceous–Paleocene limestone turbidites, Eastern Pontides, Turkey Sedimentary Geology, 181: 39-57. DOI: 10.1016/j.sedgeo.2005.07.003.
Lakirouhani, A., Asemi, F., Zohdi, A (2018) Relationship between grain size and physical properties of dolomites in order to geomechanics study of dolomite reservoirs, Journal of Petroleum research, 28 (98): 150-161. DOI: 10.22078/PR.2017.2688.2238.
Lukoczki, G., Hass, J., Gregg, J. M., Machel, H. G., Kele, S., John, M. C (2019) Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Marine and Petroleum Geology, 101: 440-458. DOI:10.1016/j.marpetgeo.2018.12.004.
Mazzullo, S. J (2000) Organogenic Dolomitization in Peritidal to Deep-Sea Sediments. Journal of Sedimentary Research, 70: 10-23.
Meister, P., McKenzie, J. A., Bernasconi, S. M., Brack, P (2013) Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60 (1): 270–291.
Rahimi, A., Adabi, M. H., Aghanabati, A., Majidifard, M. R. and Jamali, A. M (2016) Dolomitization mechanism based on petrography and geochemistry in the Shotori Formation (Middle Triassic), Central Iran. Open Journal of Geology, 6: 1149-1168.
Rahimi, A., and Adabi, M. H (2010) The effect of original carbonate mineralogy on diagenetic and porosity evolution in the Kangan, South Pars Field, Persian Gulf. The First international, Applied Geological Congress, Mashhad, Iran, 2: 2095- 2003.
Rahimi, A., and Adabi, M. H (2016) the effect of original carbonate mineralogy on diagenetic and porosity evolution in the Early Triassic, Central Iran. The Second international, Applied Geological Congress, Tehran, Iran, 1: 300-307.
Rddad, L., and S. Bouhlel (2016) The Bou Dahar Jurassic carbonate-hosted Pb–Zn–Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C–O–S–Pb isotope studies: Ore Geology Reviews, 72: 1072-1087.
Shalalvand, M., Adabi, M. H., Zohdi, A (2019) Petrography, geochemistry and model of dolomitization of  Tale Zang Formation (Late Paleocene - Early Eocene) in the south and southwest of Kermanshah. Journal of Applied Sedimentology, 7: 149-166. DOI: 10.22084/PSJ.2020.20357.1226.
Sibley, D. F., Gregg, J. M (1987) Classification of dolomite rock texture. Jour. Sed. Petrology, 57: 967-975.
Suzuki, Y., Iryu, Y., Inagaki, S., Yamada, T., Aizawa, S., Budd, D. A (2006) Origin of atoll dolomites distinguished by geochemistry and crystal chemistry: Kita-daito-jima, northern Philippine Sea. Sedimentary Geology, 183(3): 181-202. DOI:10.1016/j.sedgeo.2005.09.016.
Swart, P. K., Cantrell, D. L., Westphal, H., Handford, C. R. & Kendall, C. G (2005) Origin of dolomite in the Arab-D reservoir from the Ghawar Field, Saudi Arabia: Evidence from petrographic and geochemical constraints, Journal of Sedimentary Research, 75: 476-491. DOI: 10.2110/jsr.2005.037.
Tucker, M. E., Wright, V. P (1990) Carbonate Sedimentology. Blackwell Sci Pub, London, 482 p. DOI: 10.1002/9781444314175.
Warren, J. K (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer, Berlin, 1036 p.
Wheeler, C. W., Aharon, P., Ferrell, R. E (1999) Successions of Late Cenozoic platform dolomites distinguished by texture, geochemistry, and crystal chemistry: Niue, South Pacific. J Sediment Res, 69(1): 239-255.
Yagubi, M., Najafzadeh, A., Zohdi, A., Mahari, R., Khalegi, F (2022) Petrography and geochemistry of Elika formation dolomites in Zal Jolfa section, northwest of Iran. Journal of Applied Sedimentology, 10: 35-53. DOI: 10.22084/PSJ.2022.25490.1326.
Zenger, D. H, Dunham, J. B., Ethington, R. L (1980) Concepts and models of dolomitization. SEPM, 28. DOI: 10.2110/pec.80.20.0001.
Zohdi, A., Moallemi, S. A., Moussavi-Harami, R., Mahboubi, A., Richter, D. K., Geske, A., Nickandish, A. A., Immenhauser, A (2014) Shallow burial dolomitization of an Eocene carbonate platform, southeast Zagros Basin, Iran, GeoArabia, 19: 17-54. DOI: 10.2113/geoarabia190417.