رسوب شناسی و ژئوشیمی نهشته‌های خط ساحلی خلیج فارس در محدوده بندر بوشهر

نویسندگان

1 دانشجوی دکترا، گروه زمین‌شناسی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 استادیار گروه زمین‌شناسی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

خلیج­فارس پر اهمیت‌ترین اکوسیستم آبی در آسیای باختری و منطقه خاورمیانه است. ساحل این خلیج در محدوده بندر بوشهر از مهم‌ترین سواحل تفریحی و تجاری کشور می‌باشد. به منظور بررسی رسوب­شناسی و ژئوشیمی نهشته‌های خط ساحلی خلیج­فارس در محدوده این بندر تعداد 28 نمونه رسوب سطحی برداشت شده و مورد آنالیز دانه­بندی و آنالیز ژئوشیمیایی فلورسانس پرتوایکس قرار گرفتند. نتایج نشان می‌دهد رسوبات این ساحل دارای بافت ماسه‌ای با مقدار کمی گراول بوده که حاکی از انرژی مداوم در این ساحل و شسته شدن ذرات گل می‌باشد. نتایج ژئوشیمیایی نشان می‌دهد که بیشترین غلظت اکسید را اکسید SiO2 و Cao دارند. بررسی سنگ منشاء و جایگاه تکتونیکی این نهشته‌ها نشان دهنده ترکیب اولیه گریوکی و لیت­آرنایتی و جایگاه تکتونیکی حاشیه فعال قاره‌ای می‌باشد. جورشدگی هیدرولیکی نیز نشان­دهنده ترکیب نابالغ تا بلوغ متوسط این رسوبات بوده که شرایط آب و هوایی نیمه­خشک با رسیدگی شیمیایی متوسط را نشان می‌دهند. در مجموع وجود مشابهت شرایط تکتونیکی و آب و هوای دیرینه این نهشته‌ها با توالی زاگرس، نشان­دهنده وجود سازندهای زاگرس به عنوان منشاء اصلی این نهشته‌ها می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Sedimentology and geochemistry of Persian Gulf coastline deposits in the area of Bushehr port

نویسندگان [English]

  • B. Kiani Shahvandi 1
  • A. Moghimi Kandelous 2
  • M. Salavati 2
  • S. Hakimi Asiabar 2
1 Ph. D. student, Dept., of Geology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 Assist. Prof., Dept., of Geology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
چکیده [English]

The Persian Gulf is the most important aquatic ecosystem in West Asia and the Middle East region. The beach of this Gulf in Bushehr port is one of the most important recreational and commercial beaches in the country. In order to investigate the sedimentology and geochemistry of the Persian Gulf coastline deposits in the area of this port, 28 surface sediment samples were collected and grain size analysis and XRF geochemical analysis was done. The results showed that the sediments of this beach were sand with a small amount of gravel, which indicated continuous energy in this beach and the washing of mud particles. The geochemical results showed that the highest concentration of oxides were SiO2 and Cao. Investigating the source rock and tectonic position of these deposits showed the primary composition of lite arenite and greywacke and the tectonic position of the active continental margin. Hydraulic melting also indicated the immature to medium maturity composition of these sediments, which indicate semi-arid weather conditions with medium chemical maturity. In general, the similarity of the tectonic conditions and ancient climate of these deposits with the Zagros sequence indicated the existence of Zagros as the main source of these deposits.

کلیدواژه‌ها [English]

  • Sedimentology
  • Geochemistry
  • Persian Gulf
  • Bushehr Port
Afarin, M., Bumari, M., Mehboubi, A., Gergij, M., Hamzeh, M (2014) Sedimentology and geochemistry of detrital siliceous sediments (Tertiary-Quaternary) of the eastern coast of Chabahar, southeastern Sistan and Baluchistan, Journal Earth sciences, 24(96): 85-96. (in persian). doi.org/10.22071/gsj.2015.41691.
Afarin, M., rezaee, P., Hamzeh, M., & Jooybari, S. A (2024) Investigating the effects of monsoon on the textural characteristics of sediments sediments in the Iranian part of the continental plateau of the North Sea of Oman (Chabahar BaytoPasbandar). AppliedSedimentology, 12 (23), (in persian).
Bagheri, H (2017) Sedimentology an mineralogical characteristics of the coastal sediments in  the southern part of the Caspian Sea (Iran). Journal of Marine Science and Technology Rrsearch, 11(4): 43- 60 . (in persian).
Barzegar, M., Jafarzadeh, M., Najafzadeh, A., Khaleghi, F., & Mahari, R (2023) Petrography and geochemistry of Doroud formation sandstones in the Zal section, Eastern Azarbaijan: implication on provenance, tectonic setting and paleoweathering. Applied Sedimentology, 11(21): 62-78. (in persian).
Bazzi, A. O., Boomeri, M., Rezaei, H (2014) Sedimentary and Geochemical Characterization of the Sediments of the Coast and Bed of Govatr Gulf, Southeastern Iran. Journal of Oceanography, 5 (18): 99-11. (in persian).
Behbahani, R., Lak, R., Chanani, N., Hosseinyar, G (2014) Organic Geochemistry of Khowr-e-Mussa's Sediments and its Adjacent Marine Areas, Northwest of the Persian Gulf. Scientific Quarterly Journal of Geosciences, 23 (92): 55-67 (in persian).
Bhat, N. A., Singh, B. P., Bhat, A. A., Nath, S., & Guha, D. B (2019) Application of geochemical mapping in unraveling paleoweathering and provenance of Karewa deposits of South Kashmir, NW Himalaya, India. Journal of the Geological Society of India, 93: 68-74.‏ doi.org/10.1007/s12594-019-1124-x.  
Bhatia, M. R., & Crook, K. A (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to mineralogy and petrology, 92(2):181-193.‏ doi.org/10.1007/BF00375292.
Cai, D. W., Li, L. B., Zhu, Y. Q., & Ren, M. Q (2021) Behaviors of Major and Trace Elements in Soils Developed from Weathering Basalt in Western Guizhou, China. In IOP Conference Series: Earth and Environmental Science, 861 (7): 072006. IOP Publishing.‏
Caracciolo, L (2020) Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 209: 103226. doi.org/10.1016/j.earscirev.2020.103226.
Chougong, D. T., Bessa, A. Z. E., Ngueutchoua, G., Yongue, R. F., Ntyam, S. C., & Armstrong-Altrin, J. S (2021) Mineralogy and geochemistry of Lobé River sediments, SW Cameroon: Implications for provenance and weathering. Journal of African Earth Sciences, 183: 104320.‏ doi.org/10.1016/j.jafrearsci.2021.104320.
Cox, R., Low, D. R., Cullers, R. L (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59: 2919–2940.
Faramarzi, N. S., Amini, S., Schmitt, A. K., Hassanzadeh, J., Borg, G., McKeegan, K., Razavi, S. M. H., Mortazavi, S. M (2015) Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation. Lithos, 236: 203-211. doi.org/10.1016/j.lithos.2015.08.017.
Fattahi Bandpey, M., Hafezi Moghaddas, N., Ghafoori, M., Moussavi Harami, R., & Kazem Shiroodi, S (2021) Geological Engineering Studies of Marine Sediments, Northwestern Persian Gulf. Scientific Quarterly Journal of Iranian Association of Engineering Geology, 14(1): 85-95. (in persian).
Feng, Y., Xiao, X., Wang, E., Gao, P., Lu, C., Li, G., & Zhou, Q (2023) Origins of siliceous minerals and their influences on organic matter enrichment and reservoir physical properties of deep marine shale in the Sichuan Basin, South China. Energy & Fuels, 37(16), 11982-11995.‏ doi.org/10.1021/acs.energyfuels.3c01702.
Ghazban, F (2009) Petroleum geology of the Persian Gulf. Tehran University Press.
Gholam Dokht Bandari, M., Rezaie, P (2015) Study of Some Heavy Metal Pollutions in the Hormuz Islands Coastal Sediments and Their Origin. Journal of Oceanography, 6 (22): 97-106 (in Persian).
Ghorbani, M (2021) The geology of Iran: tectonic, magmatism and metamorphism. Springer International Publishing.‏
Gresina, F., Farkas, B., Fábián, S. Á., Szalai, Z., & Varga, G (2023) Morphological analysis of mineral grains from different sedimentary environments using automated static image analysis. Sedimentary Geology, 455: 106479. doi.org/10.1016/j.sedgeo.2023.106479.
Grygar, T. M., Mach, K., Hron, K., Fačevicová, K., Martinez, M., Zeeden, C., & Schnabl, P (2020) Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives. Sedimentary Geology, 406: 105717.‏ doi.org/10.1016/j.sedgeo.2020.105717 .
Herron, M. M (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5): 820-829.
Hosseini Bizaki, S. R., Rabbani, A. R., Riyahi Bakhtiyari, A., & Cheraghi, M (2020) Assessing the Oil Pollution Trend in Surface Sediments along the Coastal Area of the Caspian Sea (Mazandaran Province). Amirkabir Journal of Civil Engineering52(2): 427-436. doi: 10.22060/ceej.2018.14404.5647  
Hussein, M. L., & Al-Owaidi, M. R (2021) Major oxides study of the Euphrates River bed sediments from north Hilla to the Shatt Al-Arab at Basrah cities. In IOP Conference Series: Earth and Environmental Science, 790 (1):  012002. IOP Publishing. doi:10.1088/1755-1315/790/1/012002.
Jeelani, G (2023) Understanding the provenance and depositional conditions of Triassic sedimentary rocks from the Spiti region, Tethys Himalaya, India. Journal of Asian Earth Sciences, 10 (9): 100154.‏ doi.org/10.1016/j.jaesx.2023.100154 .
Jokar, A., Kohansal Ghadimvand, N., Jahani, D., & Meshal, M (2022) Origin and study of geochemical properties of detrital sediments in southwestern Iran. Quaternary Journal of Iran, 7 (3, 4), 872-888. (in persian).
Jones, M., Djamali, M., Stevens, L., Heyvaert, V., Askari, H., Norolahie, D., Weeks, L (2011) Mid Holocene environmental and climatic change in Iran. Ancient Iran and its Neighbours, Petrie C (ed). Local Developments and Longrange Interactions in the4 th Millenium BC. British Institute for Persian Studies and Oxbow Books: Oxford, UK.
Khazali, M (2021) An overview of Persian Gulf environmental pollutions. In E3S Web of Conferences, 325.
Li, W., Qian, H., Xu, P., Hou, K., Qu, W., Ren, W., & Chen, Y (2023) Insights into mineralogical distribution mechanism and environmental significance from geochemical behavior of sediments in the Yellow River Basin, China. Science of The Total Environment, 903: 166278.‏
Liu, Y., Liu, X., & Sun, Y (2021) QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions. Sedimentary geology, 423: 105980.
Maazallahi, M., Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Bajestani, M. S (2023) Provenance analysis and maturity of the Rayen River sediments in Central Iran: based on geochemical evidence. Environmental Earth Sciences, 82(3): 89.‏ doi.org/10.1007/s12665-023-10763-z.
McLennan, S. M (1994) Rare earth element geochemistry and the “tetrad” effect. Geochimica et Cosmochimica Acta, 58 (9): 2025-2033. doi.org/10.1016/0016-7037 (94)90282-8.
McLennan, S. M (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4). doi.org/10.1029/2000GC000109.
McLennan, S. M (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200. doi.org/10.1515/9781501509032-010.
Meissner, R., & Kern, H (2019) Continental crustal structure. Encyclopedia of Solid Earth Geophysics, 1-7.‏ doi.org/10.5194/se-12-1515-2021.
Moafi Madani, S. A., Mosavi Harami, S. R., Naji, A., Rezaee, P (2023) Sedimentology, Petrography, Mineralogy and Geochemistry of Deposits off the Coast of the Caspian Sea in Babolsar City. Journal of Oceanography 2023, 14 (54): 122-138.
Mohammad, A., Murthy, P. B., Rao, E. N. D., & Prasad, H (2020) A study on textural characteristics, heavy mineral distribution and grain-microtextures of recent sediment in the coastal area between the Sarada and Gosthani rivers, east coast of India. International Journal of Sediment Research, 35(5): 484-503. doi.org/10.1016/j.ijsrc.2020.03.007.
Mortazavi Mehrizi, M., Ashrafi, A., & Mirab Shabestari, G (2023) The application of petrography and geochemistry of ancient terrace sediments in determining the provenance and weathering rate, Birjand, South Khorasan. Applied Sedimentology, 11(22): 20-38. (in persian). doi.org/10.22084/psj.2022.26799.1368.
Nesbitt, H., & Young, G. M (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature, 299 (5885): 715-717. doi.org/10.1038/299715a0.
Nkomo, N (2020) The nature of geochemical anomalies associated with the PGE mineralization in the Stella layered intrusion, North West province, South Africa.‏
Ojo, O. J., Adepoju, S. A., Awe, A., & Adeoye, M. O (2021) Mineralogy and geochemistry of the sandstone facies of Campanian Lokoja formation in the Southern Bida basin, Nigeria: implications for provenance and weathering history. Heliyon, 7 (12). doi.org/10.1016/j.heliyon.2021.e08564.
Purser, B. H (Ed.) (2012) The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer Science & Business Media.
Rahman, M. A., Das, S. C., Pownceby, M. I., Tardio, J., Alam, M. S., & Zaman, M. N (2020) Geochemistry of recent Brahmaputra River sediments: provenance, tectonics, source area weathering and depositional environment. Minerals, 10(9): 813.‏ doi.org/10.3390/min10090813.
Rezaee, P., Khanehbad, M., Ezatifar, M., Jooybari, S. A., & Hosseini, K (2020) Facies analysis, sedimentation conditions and geochemistry of clastic deposits of Ashin formation (Late Ladinian-Early Carnian), Northeast of Nain, East of Central Iran. Iranian Journal of Earth Sciences, 14(3): 221-240.‏ doi.org/10.30495/ijes.2021.685396.
Riegl, B., Poiriez, A., Janson, X., Bergman, K. L (2010) The gulf: facies belts, physical, chemical, and biological parameters of sedimentation on a carbonate ramp, Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters. Springer, 145-213. doi.org/10.1007/978-90-481-9364-6_4.
Sallam, O. R., Mira, H. I., Tohamy, A. M. E., & Abbas, A. E. A (2021) Mineralogy and geochemistry of uraniferous sandstones in fault zone, wadi El sahu area, southwestern sinai, Egypt: implications for provenance, weathering and tectonic setting. Acta Geologica Sinica‐English Edition, 95(3): 830-845. doi.org/10.1111/1755-6724.14613.
Suttner, L. J., & Dutta, P. K (1986) Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3): 329-345.
Tang, W., Song, Y., He, W., Tang, Y., Guo, X., Pe-Piper, G., & Chen, A (2023) Petrochemical and geochronological data of Permian-Lower Triassic clastic sedimentary rocks in the northwestern Junggar basin, NW China: Implications for provenance, tectonism and paleoclimate. Marine and Petroleum Geology, 148: 106027.‏ doi.org/10.1016/j.marpetgeo.2022.106027.
Waldschläger, K., Brückner, M. Z., Almroth, B. C., Hackney, C. R., Adyel, T. M., Alimi, O. S., ... & Wu, N (2022) Learning from natural sediments to tackle microplastics challenges: a multidisciplinary perspective. Earth-Science Reviews, 228, 104021. doi.org/10.1016/j.earscirev.2022.104021.
Wang, C., Chen, M., Qi, H., Intasen, W., & Kanchanapant, A (2020) Grain-size distribution of surface sediments in the chanthaburi coast, Thailand and implications for the sedimentary dynamic environment. Journal of Marine Science and Engineering, 8 (4): 242. doi.org/10.3390/jmse8040242.
Wronkiewicz, D. J., & Condie, K. C (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51(9): 2401-2416. doi.org/10.1016/0016-7037 (87) 90293-6.
Zarezadeh, Z (2017) Sedimentology, mineralogy and geochemistry of the Persian Gulf mangrove forest deposits, west of Bandarabbas, PhD thesis in geology, Hormozgan University, 298p. (in persian)
Zhao, W., Liu, L., Chen, J., & Ji, J (2019) Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source. Science China Earth Sciences, 62: 1428-1440.‏ doi.org/10.1007/s11430-018-9354-y.