ارزیابی روند گسترش آبکندها در بازه زمانی 56 ساله (1346-1402) و برآورد فرسایش و رسوب در حوزه آبخیز دشت جیحون شهرستان بندر خمیر

نویسندگان

1 دکترای علوم و مهندسی آبخیزداری، گروه منابع طبیعی و آبخیزداری، شرکت مهندسین مشاور ایده‌پردازان توسعه، تهران، ایران

2 دکترای مهندسی منابع آب، اداره مهندسی و مطالعات، اداره کل منابع طبیعی و آبخیزداری استان هرمزگان، بندرعباس، ایران

3 دانشیار گروه زمین‌شناسی دانشگاه هرمزگان، بندرعباس، ایران

4 کارشناس مرتع و آبخیزداری، گروه منابع طبیعی و آبخیزداری، شرکت مهندسین مشاور ایده‌پردازان توسعه، تهران، ایران

5 دکترای هواشناسی مخاطرات اقلیمی، اداره مهندسی و مطالعات، اداره کل منابع طبیعی و آبخیزداری استان هرمزگان، بندرعباس، ایران

چکیده

هدف از این پژوهش، بررسی روند گسترش آبکندها و تعیین مقدار فرسایش و رسوب در حوزه آبخیز دشت جیحون شهرستان بندر خمیر در استان هرمزگان است. برای این منظور، از عکس‌های هوایی سال‌های 1346 و 1373، تصاویر تاریخی گوگل ارث در سال 1391 و تصویربرداری پهپاد در سال 1402 استفاده شد. همچنین جهت برآورد فرسایش­های سطحی از مدل­های WaTEM/SEDEM و RUSLE استفاده شد. به منظور برآورد مقدار فرسایش آبکندی از تصویربرداری پهپاد باGSD  3 سانتی­متر استفاده و نقشه گسترش آبکندها استخراج شد. سپس با اندازه­گیری مشخصات مورفومتریک آبکندها، مقدار هدررفت خاک ناشی از فرسایش آبکندی برآورد گردید. نتایج نشان داد، سطح آبکندها از 64/132 هکتار در سال 1336 به 39/326 هکتار در سال 1402 رسیده است که حاکی از نرخ پیشروی 46/3 هکتار در سال را دارد. مشخصات مورفومتری آبکندها در 481 نقطه با استفاده از DEM پهپاد با دقت 6 سانتی­متر اندازه­گیری شد. متوسط عمق آبکندها 01/1 متر بوده و به طور کلی می­توان گفت آبکندهای منطقه بیش­تر آبکندهای کوچک و تا حدودی متوسط می­باشند. هم­چنین نسبت عرض بالا به عمق آبکندها بزرگ­تر از 1 هستند و از نظر تخریب اراضی زراعی و زیرساخت­ها حائز اهمیت هستند. یافته­ها نشان می­دهد که عامل اصلی پیشروی آبکندهای حوضه، سیلاب و رسیدن آب به این آبکندها می‌باشد. متوسط فرسایش خاک ناشی از فرسایش­های سطحی در منطقه مورد مطالعه به طور متوسط حدود 40/3 تن در هکتار در سال است. مقدار کل هدررفت خاک در اثر فرسایش آبکندی به طور متوسط حدود 52 هزار تن در سال، برآورد گردید. بر این اساس میانگین 56 ساله (1402-1346) هدررفت خاک در اثر فرسایش آبکندی حدود 12 تن در هکتار در سال محاسبه شد. در نهایت مقدار کل سالانه هدررفت خاک در اثر انواع فرسایش، معادل حدود 4/15 تن از هر هکتار در سال برآورد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Gully Expansion over a 56-Year Period (1967-2023) and Estimation of Erosion and Sedimentation in the Dashte Jeyhoon Watershed, Bandar Khamir County

نویسندگان [English]

  • M. Samadi 1
  • M. Zamani Rad 2
  • P. Rezaie 3
  • A. P. Moslem 4
  • A. Kamali 5
1 Ph. D in Watershed Management Science and Engineering, Department of Natural Resources and Watershed Management, Ideh Pardazan Tosseah Consulting Engineering Company, Tehran, Iran
2 Ph. D in Water Resources Engineering, Department of Engineering and Studies, General Bureau of Natural Resources and Watershed Management of Hormozgan Province, Bandar Abbas, Iran
3 Assoc. Prof., Dept., of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
4 Bachelor in Rangeland and Watershed Management, Department of Natural Resources and Watershed Management, Ideh Pardazan Tosseah Consulting Engineering Company, Tehran, Iran
5 Ph. D in Meteorology and Climate Hazards, Department of Engineering and Studies, General Bureau of Natural Resources and Watershed Management of Hormozgan Province, Bandar Abbas, Iran
چکیده [English]

This study investigates gully expansion and quantifies soil erosion and sedimentation in the Dashte Jeyhoon watershed, Bandar Khamir County. The analysis utilized aerial photographs from 1967 and 1994, historical Google Earth images from 2012, and UAV imagery from 2023 to assess gully growth. Surface erosion was estimated using the WaTEM/SEDEM and RUSLE models. UAV imaging, with a ground sampling distance (GSD) of 3 cm, was conducted to map gully expansion and measure morphometric characteristics, providing an estimate of soil loss due to gully erosion. The findings indicate that the gully area increased from 132.64 hectares in 1967 to 326.39 hectares in 2023, with an expansion rate of 3.46 hectares per year. Detailed measurements were taken at 481 points using a digital elevation model (DEM) with a 6 cm accuracy, derived from UAV data. The average gully depth was found to be 1.01 meters, suggesting that the gullies in the study area are generally small to medium in size. The ratio of top width to depth exceeding 1 highlights significant implications for the destruction of agricultural lands and infrastructure. Flooding and water flow into the gullies were identified as the primary drivers of gully expansion in the watershed. The study estimated that average soil erosion from surface processes was approximately 3.40 tons per hectare per year, while total soil loss from gully erosion was around 52,000 tons per year. Over a 56-year period (1967-2023), the average soil loss due to gully erosion was calculated to be approximately 12 tons per hectare per year. The total annual soil loss from all erosion types in the Dashte Jeyhoon watershed was estimated at 15.4 tons per hectare per year.

کلیدواژه‌ها [English]

  • Gully
  • UAV
  • Erosion Models
  • Morphometry
  • DEM
Akbarian, M., Kaboli, S. H., Moradi, N (2012) Comparison of water and wind erosion functions in soil degradation of arid and semiarid lands (Case Study: Dashte-Jeihoon of Khamir County, Hormozgan province) Journal of Range and Watershed Management, 65(4): 433-448. doi: 10.22059/jrwm.2012.32043 (In Persian).
Amore, E., Modica, C., Nearing, M. A., Santoro, V. C (2004) Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins Journal of Hydrology, 293: 100-114. doi: 10.1016/j.jhydrol.2004.01.020.
Anderson, K., Gaston, K. J (2013) Lightweight unmanned aerial vehicles will revolutionize spatial ecology Frontiers in Ecology and the Environment, 11: 138-146. doi: 10.1890/120150.
Asadi, H (2022) A Critical Report on Several Aspects of Dust Sources in Iran Journal of Environmental Management, 301: 113879. doi: 10.1016/j.jenvman.2021.113879.
Baban, S. M. J., Yusoff, S (2000) Predicting soil erosion risk using GIS Journal of Environmental Management, 60: 27-37. doi: 10.1006/jema.2000.0326.
Bai, Z., Dent, D. L., Olsson, L., Schaepman, M. E (2008) Proxy global assessment of land degradation Soil Use and Management, 24: 223-234. doi: 10.1111/j.1475-2743.2008.00163.x.
Ballabio, C., Panagos, P., Borrelli, P., Meusburger, K., Montanarella, L (2016) A high-resolution global dataset of soil erodibility Geoderma, 261: 110-123. doi: 10.1016/j.geoderma.2015.07.006.
Beukes, H., Scholes, R. J., Malherbe, J., O'Connor, T. G (2002) The impact of land use change on soil erosion in the Eastern Cape Journal of Arid Environments, 50: 235-248. doi: 10.1006/jare.2002.0933.
Boardman, J., Evans, R (2006) Soil erosion and sediment transport on the hillslope and small catchment: Theory and practice Journal of Soil and Water Conservation, 61: 214-223.
Borrelli, P., Robinson, D. A., C. Panagos, P., Russo, L., V. Govers, G (2018) Land use and climate change impacts on soil erosion in Europe Scientific Reports, 8: 1-10. doi: 10.1038/s41598-018-2213-1.
Bui, D. T., Ziaul, A., Liu, W., Bhuiyan, M. A (2021) Modeling and prediction of soil erosion risk in tropical and subtropical regions using the RUSLE model Remote Sensing Applications: Society and Environment, 22: 100341. doi: 10.1016/j.rsase.2021.100341.
Cerdà, A (1997) The effects of land use on soil erosion in a Mediterranean environment Soil Science Society of America Journal, 61: 1582-1593.
Chang, Y., Govers, G., Verstraeten, G., Poesen, J., De Vries, W (2007) The use of GIS for estimating soil erosion risk in China Journal of Soil and Water Conservation, 62: 233-240.
Chowdhury, R., Singh, S., Kumar, S., Singh, P (2020) Soil erosion modeling using the RUSLE and its application in watershed management Journal of Hydrology, 582: 124529. doi: 10.1016/j.jhydrol.2019.124529.
Corbitt, E. S (2000) Standard Handbook of Environmental Engineering McGraw-Hill.
De Santis, F., Bouzille, J. B., Zerr, D., Galtier, N., Andre, J. B (2019) Soil erosion risk and sediment delivery in a Mediterranean catchment Journal of Soil and Water Conservation, 74: 39-50. doi: 10.2489/jswc.74.1.39.
Devries, W., Schilling, A., Lenders, A., Wong, M., Fisher, B (2009) Soil erosion and the role of vegetation Journal of Environmental Quality, 38: 2607-2615. doi: 10.2134/jeq2008.0480.
Fauran, J., Tissier, A., Martin, J. C., Bardy, M (2017) Soil erosion in southern France: Historical and recent trends and their implications for sustainable land management Land Degradation & Development, 28: 1125-1138. doi: 10.1002/ldr.2592.
Fiener, P., Auerswald, K (2003) Impact of soil surface properties on soil erosion in a Mediterranean environment Soil Science Society of America Journal, 67: 209-219. doi: 10.2136/sssaj2003.2090.
Foltz, R., Fairweather, L., Williams, B (2009) Estimating soil erosion with the WEPP model in small Mediterranean watersheds Soil and Tillage Research, 106: 35-45. doi: 10.1016/j.still.2009.01.005.
Gao, W., Zhang, Y., Li, H., Zhang, Y., Xu, Z (2019) Analysis of soil erosion risk in the Loess Plateau using the RUSLE model Environmental Monitoring and Assessment, 191: 255. doi: 10.1007/s10661-019-7548-6.
Geng, Y., Liu, J., Liu, C., Xu, M (2014) Soil erosion and its impact on land productivity in the Loess Plateau Journal of Geographical Sciences, 24: 1427-1438. doi: 10.1007/s11442-014-1157-5.
Gregorich, E. G., Carter, M. R., Angers, D. A., Drury, C. F (2016) Soil organic matter, soil quality, and soil degradation: Toward a holistic understanding Soil & Tillage Research, 155: 1-9. doi: 10.1016/j.still.2015.07.001.
He, J., Yu, Y., Wang, L., Liu, G (2017) Evaluation of soil erosion risk in a mountainous region using the RUSLE model International Soil and Water Conservation Research, 5: 152-160. doi: 10.1016/j.iswcr.2017.03.007.
Hessel, R., Jetten, V., Vigiak, O (2010) Soil erosion modeling: State of the art and future needs Journal of Environmental Management, 91: 1-13. doi: 10.1016/j.jenvman.2009.08.011.
Holmgren, M., Scheffer, M., Ezcurra, E., Gutierrez, J. R. (2006) The role of vegetation in soil erosion and sediment transport Journal of Soil and Water Conservation, 61: 300-308.
Huang, C., Wu, J., Sun, C., Chen, X (2019) A review of soil erosion assessment models and their applications to land degradation in China Journal of Arid Land, 11: 139-156. doi: 10.1007/s40333-019-0004-2.
Jansen, B., Dijk, A (2009) Soil erosion and sediment yield models in forested catchments: A review Journal of Hydrology, 374: 48-59. doi: 10.1016/j.jhydrol.2009.06.021.
Jayawardena, A. W., Ma, L., Yang, X., Nguyen, H. T (2020) Assessing the impact of land use changes on soil erosion using the RUSLE model Land Degradation & Development, 31: 2565-2579. doi: 10.1002/ldr.3486.
Karydas, C., Grigoropoulos, N., Tsakiri, M., Koutsoyiannis, D (2006) Soil erosion and sediment transport in Mediterranean environments: A review Hydrological Processes, 20: 3425-3435.
Kim, H., Park, S., Han, D (2017) Use of the RUSLE model to estimate soil erosion risk in a semi-arid region Journal of Hydrology, 548: 240-251. doi: 10.1016/j.jhydrol.2017.03.021.
Kumar, A., Kumar, S., Verma, S (2015) Soil erosion and sediment transport modeling using the RUSLE model in the Himalayas Environmental Monitoring and Assessment, 187: 1-15. doi: 10.1007/s10661-015-4591-2.
Li, Y., Zhu, Z., Zhang, J., Liu, W (2016) Estimating soil erosion in a tropical watershed using the RUSLE model and remote sensing data Journal of Soil and Water Conservation, 71: 23-33. doi: 10.2489/jswc.71.1.23.
Liang, X., Zhang, S., Ding, J., Wang, J (2018) Modeling soil erosion and sediment yield using the RUSLE model in the Tibetan Plateau Land Degradation & Development, 29: 100-112. doi: 10.1002/ldr.2841.
Liu, J., Zhang, Q., Chen, X., Wang, W (2019) Assessment of soil erosion risk in the upper Yangtze River Basin using the RUSLE model Journal of Environmental Management, 231: 1043-1052.
Lu, N., Xu, Y., Xu, H., Lu, J (2021) Impact of land use changes on soil erosion in the Loess Plateau using the RUSLE model Environmental Science and Pollution Research, 28: 27662-27672. doi: 10.1007/s11356-021-12780-4.
Ma, L., Liu, J., Wang, Y., Li, Q (2020) Soil erosion assessment in the upper Yangtze River Basin using the RUSLE model and GIS technology Journal of Soil and Water Conservation, 75: 179-189. doi: 10.2489/jswc.75.2.179.
Mccool, D. K., Wischmeier, W. H., Knisel, W. G (1995) Revised Universal Soil Loss Equation (RUSLE) National Soil Erosion Research Laboratory, U.S. Department of Agriculture.
Mendez, M., Sanchez, M., Gonzalez, J (2008) Evaluating soil erosion risk using the RUSLE model and GIS Journal of Environmental Quality, 37: 548-558.
Miller, D., Franklin, S., Lyon, R (2002) Remote sensing for soil erosion monitoring in agricultural landscapes Journal of Soil and Water Conservation, 57: 207-213.
Morgan, R. P. C., Nearing, M. A (2014) Soil erosion and sediment transport models for catchment scale and regional scale studies Soil Science Society of America Journal, 78: 245-256. doi: 10.2136/sssaj2013.04.0155.
Mukherjee, S., Singh, S (2020) Analyzing soil erosion in the Indian Himalayas using the RUSLE model and remote sensing techniques Journal of Mountain Science, 17: 1821-1835. doi: 10.1007/s11629-020-6060-3.
Nagle, G., Bauer, H., Wang, Y (2019) Soil erosion modeling using the RUSLE model: Applications in tropical and subtropical environments Journal of Soil Science and Plant Nutrition, 19: 90-106. doi: 10.1007/s42729-019-00015-0.
Nearing, M. A., Pruski, F. F., O'Neal, M. R (2004) Expected climate change impacts on soil erosion rates: A review Journal of Soil and Water Conservation, 59: 43-50.
Niu, X., Zhang, Z., Liu, Y., Zhou, W (2018) Modeling soil erosion in the Loess Plateau using the RUSLE model and remote sensing data Journal of Arid Environments, 156: 58-70. doi: 10.1016/j.jaridenv.2018.01.014.
Panagos, P., Borrelli, P., Meusburger, K., Ballabio, C (2015) The European Soil Erosion Map: A new tool for assessing soil erosion risk at the European scale Science of The Total Environment, 537: 195-209. doi: 10.1016/j.scitotenv.2015.06.026.
Pimentel, D., Berger, B., Fast, M., Sinsabaugh, R (2014) Soil erosion and the role of soil conservation practices Soil Science Society of America Journal, 78: 299-308. doi: 10.2136/sssaj2013.05.0206.
Poesen, J., Hooke, J. M (1997) Erosion, sedimentation, and land degradation in Europe Catena, 28: 51-65.
Rigon, R., Soro, E., Montanari, A., Paris, P (2006) Advances in the modeling of soil erosion: A case study in the Mediterranean region Journal of Hydrology, 319: 92-105. doi: 10.1016/j.jhydrol.2005.07.005.
Ritchie, J. C., McCulloch, C (2003) Modeling soil erosion in Mediterranean environments using the RUSLE model Catena, 52: 257-274. doi: 10.1016/S0341-8162(02)00224-6.
Robinson, D. A., Cerdà, A., Keesstra, S. D (2015) Soil erosion and sedimentation processes in Mediterranean environments: A review of the RUSLE model Journal of Arid Environments, 116: 146-156.
Scherr, S. J., Yadav, S., Pagiola, S (1999) Land degradation in the Mediterranean: A review of processes and mitigation strategies Journal of Environmental Management, 56: 319-333.
Selvakumar, A., Patil, R., Samal, A (2020) Assessing soil erosion in the Indian context using the RUSLE model Environmental Monitoring and Assessment, 192: 1-17. doi: 10.1007/s10661-020-08429-6.
Si, B. C., Liang, X., Lin, S (2005) Modeling soil erosion in the Chinese Loess Plateau using the RUSLE model Journal of Soil and Water Conservation, 60: 318-326.
Simoni, S., Govers, G., Vanacker, V (2004) Soil erosion and sediment transport modeling using the RUSLE model and remote sensing data Journal of Hydrology, 291: 46-59. doi: 10.1016/j.jhydrol.2003.12.007.
Tabi, K., Chao, Z., Wang, L., Liu, H (2021) Evaluation of soil erosion risk in a small watershed using the RUSLE model and GIS Journal of Environmental Management, 290: 112663. doi: 10.1016/j.jenvman.2021.112663.
Thomas, M., Webb, N., Davies, R (2008) Soil erosion and sedimentation processes in the UK: A review of the RUSLE model Journal of Soil Science and Plant Nutrition, 8: 21-35. doi: 10.1065/jsspj.2007.07.005.
Van Oost, K., Govers, G., van Muysen, W., desmet, P (2004) The impact of soil erosion on soil productivity in the Mediterranean region: A case study in Greece Soil & Tillage Research, 77: 75-85. doi: 10.1016/j.still.2003.12.001.
Verstraeten, G., Poesen, J., Govers, G., Desmet, P. (2006) The impact of land use changes on soil erosion in Mediterranean environments: A review of recent research Catena, 66: 43-55.
Wischmeier, W. H., Smith, D. D (1978) Predicting Rainfall Erosion Losses: A Guide to Conservation Planning U.S. Department of Agriculture, Agricultural Handbook No. 537.