ژئوشیمی قیرهای طبیعی باختر استان کرمانشاه (گیلان‌غرب)

نویسندگان

1 دانشجوی کارشناسی‌ارشد زمین‌شناسی اقتصادی، گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان، ایران

2 استاد گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان، ایران

چکیده

ذخایر قیر طبیعی منطقه گیلان‌غرب، از دیدگاه زمین­ساختی در کمربند چین‌خورده زاگرس قرار گرفته است. ناحیۀ موردمطالعه در محدوده پهنه‌های زمین‌ساخت - چینه‌ای لرستان و میان‌رودان واقع شده است و به لحاظ ساختمانی در پهنۀ چین‌خوردة ساده قرار می‌گیرد. از روش آنالیز عنصری انجام شده بر روی نمونه‌های قیر طبیعی برای ارزیابی کیفیت قیرهای منطقه گیلان‌غرب، مشخص‌کردن نوع کروژن و میزان انعکاس تقریبی ویترینایت استفاده شد. بدین منظور تعداد هشت نمونه از ذخایر قیر طبیعی منطقه مورد بررسی ژئوشیمی آلی قرار گرفت. قیرهای ‌طبیعی استحصال شده از مخزن به طور معمول نسبت H/C کمتر از 1 دارند. کمترین میزان نسبت H/C، نمونه‌های مورد بررسی 15/1 است. باتوجه‌به این نکته، قیرهای طبیعی منطقه موردمطالعه مستقیماً از سنگ (‌های) مولد زایش یافته‌اند. میانگین کربن نمونه‌ها حدود 65 درصد است و قیرهای منطقه کیفیت بالایی دارند. قیرهای منطقه موردمطالعه عبارت‌اند از: گراهامیت (Ptm3)، آلبرتیت هوازده (Mjm, Ptm1)، گلانس‌پیچ (Jv, Ptm2) و گیلسونایت با هوازدگی کم (Jv). بین درصد خاکستر و درصد مواد فرار نمونه‌های قیر طبیعی و همچنین بین درصد خاکستر نمونه‌ها با درصد عنصر کربن رابطه معکوس وجود دارد و با افزایش میزان خاکستر، میزان کربن کاهش پیدا کرده و کیفیت قیر طبیعی کاهش پیدا می‌کند. رابطه مستقیمی بین درصد مواد فرار و میزان کربن نمونه‌ها وجود دارد و میزان مواد فرار به‌عنوان یک شاخص از کیفیت قیر طبیعی تلقی می‌گردد. بدین معنی که با افزایش آن کیفیت قیر طبیعی (میزان کربن) افزایش می‌یابد. بین میزان خاکستر و میزان عنصر هیدروژن در نمونه‌های قیر طبیعی رابطه عکس وجود دارد. بین درصد مواد فرار نمونه‌های قیر طبیعی با میزان عنصر اکسیژن رابطه عکس وجود دارد. اما بین درصد خاکستر نمونه‌ها با درصد عنصر اکسیژن رابطه مستقیم وجود دارد. رابطه مستقیم بین درصد مواد فرار و میزان هیدروژن نمونه‌ها برقرار است. تمامی نمونه‌ها وزن مخصوص بالاتر از یک و درجه API منفی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry of natural bitumens in West of Kermanshah province (Gilan-e-Gharb)

نویسندگان [English]

  • P. Jafari 1
  • M. Maanijou 2
  • H. Mohseni 2
1 M. Sc. in Economic Geology, Dept., of Geology, Faculty of Sciences, Bu Ali Sina University, Hamedan, Iran
2 Prof., Dept., of Geology, Faculty of Sciences, Bu Ali Sina University, Hamedan, Iran
چکیده [English]

The natural bitumen reserves in the Gilan-e-Gharb region are located in the Zagros Folded belt. The study area lies within the tectonic-stratigraphic zones of Lorestan and the Mesopotamia region, and structurally, within the simple fold belt. Elemental analysis conducted on natural bitumen samples was utilized to determine the types of bitumen in the Gilan-e-Gharb region, identify the various type of kerogen, and estimate the approximate reflectance of vitrinite. For these purposes, 8 samples from natural bitumen reserves were subjected to organic geochemical analysis. Natural bitumens with a reservoir origin typically have an H/C ratio of less than 1. Whereas, the analyzed samples have an average ratio of 1.15. Based on this data, the reservoir origin of the natural bitumens in the study area is deemed improbable.Hence a source rock origin for these reserves is plausible. The average carbon content of the samples is approximately 65 Wt%, indicating their high quality. The types of bitumen in the study area include Grahamite (Ptm3), weathered Albertite (Mjm, Ptm1), Glance Pitch (Jv, Ptm2), and low-weathered Gilsonite (Jv). An inverse relationship exists between the percentage of ash and the percentage of volatiles in the natural bitumen samples, as well as between the percentage of ash and the percentage of carbon. As the amount of ash increases, the carbon content decreases, leading to a reduction in the quality of the natural bitumen. A direct relationship is observed between the percentage of volatiles and the carbon content. This means that an increase in volatiles corresponds to an improvement in the quality of natural bitumen (and their carbon content as well). There is an inverse relationship between the carbon content and ash content and hydrogen value. Additionally, an inverse relationship exists between the percentage of volatiles and the oxygen content, while a direct relationship is notable between the percentage of ash and the oxygen content of the samples. A direct relationship is also established between the percentage of volatiles and the hydrogen content of the samples. All samples exhibit a specific gravity greater than one and a negative API degree which is probable due to relatively high sulfur and nitrogen content.

کلیدواژه‌ها [English]

  • Natural bitumen
  • Surface Evidence
  • Organic geochemistry
  • Ash content
  • Volatiles matter
  • Type of kerogen
Ahmadi Khalji, A., Safarzadeh, M., and Mohammadi, M (2013) Geochemistry, formation and characteristics of natural bitumen in Shak Meidan-Klidvand area (northwest of Gilan Gharb). Scientific and Promotional Monthly of Oil and Gas Exploration and Production. (In Persian).
Baskin, D. K (1997) Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG Bulletin, 81(9): 1437-1450.
Berberian, M., and King, G (1981) Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265. doi.org/10.1139/e81-019.
Bertrand, R (1993) Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada. Energy Sources, 15: 269–287. doi.org/10.1080/00908319308909027.
Dembicki, H (2016) Geochemistry for Exploration and Production. Elsevier, 100-143. eBook ISBN: 9780128033517.
Emmanuel, S., Eliyahu, M., Day-Stirrat, R. J., and Hofmann, R (2016) Impact of thermal maturation on nano-scale elastic properties of organic matter in shales. Marine and Petroleum Geology, 70: 175–184.
Farhadi, M (1999) Report on the exploration of natural asphalt in the Kouhdasht region of Lorestan. Lorestan Province Industry, Mine, and Trade Organization. (In Persian).
Gentzis, T., and Goodarzi, F (1990) A review of the use of bitumen reflectance in hydrocarbon exploration with examples from Melville Island, Arctic Canada. In: Nuccio, V.F., and Barker, C.E. (Eds.), Application of Thermal Maturity Studies to Energy Exploration. Eastwood, Denver, CO, 23–36.
Goodarzi, F., and Williams, P. F (1986) Composition of natural bitumens and asphalts from Iran: 2. Bitumens from the Posteh Ghear valley, southwest Iran. Fuel, 65(1): 17-27. doi.org/10.1016/0016-2361 (86)90136-5.
Hackley, P. C., Zhang, L., and Zhang, T (2017) Organic petrology of peak oil maturity Triassic Yanchang formation lacustrine mudrocks, Ordos Basin, China. Interpretation, 5, SF211–SF223. doi.org/10.1190/INT-2016-0111.1.
Hunt, J. M (1979) Petroleum Geochemistry and Geology. Freeman, 345-360. doi.org/10.1017/S0016756800032684.
Hunt, J. M (1996) Petroleum Geochemistry and Geology (2nd Ed.). WH Freeman Company, 258-260. ISBN 0716724413, 9780716724414.
Ismaili, M., Nazari, M., and Asgari, G (2019) Introduction of promising areas for natural asphalt mineralization in the Shak Meidan zone (Kermanshah Province). Journal of Earth Sciences, 29 (114). (In Persian).
Jafari, P., Maanijou, M., and Alipour, R (2024) Tectonic factors in the formation of natural bitumen mines in Gilangharb (Shak Meidan). The 9th National Conference on Tectonics and Structural Geology of Iran. (In Persian).
Jafari, P., Maanijou, M., and Mohseni, H (2024) Petrography of bitumen (natural bitumen) in the Gilan-e Gharb area, Kermanshah Province. 8th Symposium of Sedimentological Society of Iran. (In Persian).
Jarvie, D. M., Hill, R. J., Ruble, T. E., and Pollastro, R. M (2007) Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91: 475–499. doi.org/10.1306/12190606068.
Kondla, D., Sanei, H., Embry, A., Ardakani, O. H., and Clarkson, C. R (2015) Depositional environment and hydrocarbon potential of the middle Triassic strata of the Sverdrup Basin, Canada. International Journal of Coal Geology, 147 (148): 71–84.
Landis, C. R., and Castaño, J. R (1995) Maturation and bulk chemical properties of a suite of solid hydrocarbons. Organic Geochemistry, 22: 137–149. doi.org/10.1016/0146-6380 (95)90013-6.
Liu, B., Schieber, J., and Mastalerz, M (2017) Combined SEM and reflected light petrography of organic matter in the New Albany shale: a perspective on organic porosity development with thermal maturation. International Journal of Coal Geology, 184: 57–72. doi.org/10.1016/j.coal.2017.11.002.
Mählmann, R. F., and Le Bayon, R (2016) Vitrinite and vitrinite-like solid bitumen reflectance in thermal maturity studies: correlations from diagenesis to incipient metamorphism in different geodynamic settings. International Journal of Coal Geology, 157: 52–73. doi.org/10.1016/j.coal.2015.12.008.
Maleki, N (2022). Geochemical study and formation of bitumens in Lorestan Province (Kouhdasht, Poldokhtar, and Sepid Dasht areas). Doctoral dissertation, Lorestan University. (In Persian).
Mastalerz, M., Drobniak, A., and Stankiewicz, A. B (2018) Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. International Journal of Coal Geology, 195: 14-36. DOI: 10.1016/j.coal.2018.05.013.
Mohammadi, M (2012) Geochemistry, formation, and characteristics of natural asphalts in the Shekaf Meidan - Khalidvand area, northwest Gilan-e Gharb. Master’s thesis, Islamic Azad University, Khorramabad. (In Persian).
Moseni, H., Mansouri, H., Khodabakhsh, S., and Memariani, M (2015) Evaluation of hydrocarbon generation potential of the Pabdeh Formation in the southwestern Kermanshah Province (Gilan-e Gharb County). Journal of Applied Sedimentology. (In Persian).
National Iranian Oil Company, Exploration Management (2010) Geological map of Sarpole Zahab ((1:100000).
National Iranian Oil Company, Exploration Management (2013) Geological map of Jajarlu Aghabarar (1:50000).
Pilehram, A (2016) Petrography, petrology, geochemistry, and formation environment of bitumens (gilsonite) in the northwest Zagros. Master’s thesis, Damghan University. (In Persian).
Rippen, D., Littke, R., Bruns, B., and Mahlstedt, N (2013) Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Organic Geochemistry, 63: 18–36. doi.org/10.1016/j.orggeochem.2013.07.013.
Rogers, M. A., McAlary, J. D., and Bailey, N. J. L (1974) Significance of reservoir bitumens to thermal-maturation studies, Western Canada Basin. AAPG Bulletin, 5: 1806–1824.
Schoenherr, J., Littke, R., Urai, J. L., Kukla, P. A., and Rawahi, Z (2007) Polyphase thermal evolution in the infra-Cambrian Ara Group (South Oman Salt Basin) as deducted by maturity of solid reservoir bitumen. Organic Geochemistry, 38: 1293–1318. doi.org/10.1016/j.orggeochem.2007.03.010.
Talbot, C., and Alavi, J. M (1996) The past of a future syntaxis across the Zagros: In: Alsop, G.L., Blundell, D.L., and Davison, I. (Eds). Salt Tectonics. Geological Society of London Special Publication, 100: 129-151. doi.org/10.1144/GSL.SP.1996.100.01.08.
Tissot, B., Durand, B., Espitalie, J., and Combaz, A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 58(3): 499-506.
Treibs, A (1934) The occurrence of chlorophyll derivatives in organic materials. Annalen, 517: 103-114.
Valentine, B. J., Hackley, P. C., Enomoto, C. B., Bove, A. M., Dulong, F. T., Lohr, C. D., and Scott, K. R (2014) Organic petrology of the Aptian-age section in the downdip Mississippi Interior Salt Basin, Mississippi, USA: observations and preliminary implications for thermal maturation history. International Journal of Coal Geology, 131: 378–391. doi.org /10. 1016/j.coal.2014.07.001.
Van Krevelen, D (1961) Coal: topology-chemistry-physics-constitution. Elsevier, Amsterdam. 514p.
Wood, J. M., Sanei, H., Curtis, M. E., and Clarkson, C. R (2015) Solid bitumen as a determinant of reservoir quality in an unconventional tight gas siltstone play. International Journal of Coal Geology, 150 (151): 287–295.