رسوب‌شناسی، محیط‌های رسوبی و ژئوشیمی آلی در بخش جنوبی حوضه خزر جنوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

مدیریت زمین‌شناسی دریایی، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران

چکیده

به منظور بررسی رسوب­شناسی، محیط­های رسوبی و ژئو­شیمی­آلی در بخش جنوبی حوضه خزر جنوبی، تعداد 124 نمونه رسوب سطحی  (نواحی کم­ژرفا تا ژرف) با نمونه­گیر فکی برداشت شده و از نظر کربن آلی کل و s2 (پیرولیز راک-اول)، محتوی زیستی (موجودات آشفته کننده)، اندازه ذرات و کانی­شناسی تحت آنالیز قرار گرفتند. بر پایه داده­های لرزه­ای کم­ژرفا و مشاهدات میدانی، محیط­های دلتا، سکوی قاره، شیب قاره و دشت حوضه شناسایی گردیدند. ذرات تشکیل­دهنده این ناحیه به سه گروه آواری (کوارتز، خرده­سنگ کربناته و غیر کربناته، فلدسپات، مسکویت و کانی­های رسی اسمکتیت، کائولینیت، ایلیت و کلریت)، آلی- زیستی (پوسته موجوداتی نظیر دوکفه­ای، استراکود و گاستروپود) و قطعات غیر اسکلتی (پلوئید­های آهکی گلی) تقسیم شده است. چندین شاخص نظیر میزان کربن آلی کل، نوع مواد آلی و محتوی زیستی نشان­دهنده شرایط متفاوت اکسیدان (رسوبات سکو و شیب قاره) و فقیر از اکسیژن (رسوبات ژرف دشت حوضه) می­باشد. رسوبات فقیر از اکسیژن، غنی از مواد آلی نوع II و حاوی کربن آلی کل بیش از 1 درصد وزنی می­باشند، در حالی­که رسوبات مناطق اکسیدان، غنی از پوسته موجودات ساکن در بین رسوبات (نظیر گاستروپودا و استراکودا)، حاوی مواد آلی نوع III و کربن آلی کل کم­تر از 1 درصد وزنی می­باشند. این موارد نشان­دهنده حفظ بهتر مواد آلی در مناطق ژرف­تر (دشت حوضه) می­باشد. مواد آلی نوع III نشان­دهنده ورود مواد آلی خشکی­زی (قاره­ای) به رسوبات سکو و شیب قاره می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Sedimentology, depositional settings and organic geochemistry in the southern part of the South Caspian Basin

نویسندگان [English]

  • r behbahani
  • a karim khani
  • gh hosseinyar
چکیده [English]

In order to study sedimentology, depositional settings and organic geochemistry in the southern part of the South Caspian Basin, 124 surface samples were taken from shallow to deep water with utilizing Van Veen Grab. All samples were analyzed for total organic carbon (TOC), S2 (Rock-Eval Pyrolysis), biota content (bioturbating organisms), particles size and mineralogy. Based on shallow seismic data, a range of depositional settings were distinguished including delta, shelf, slope, and basin plain. Composition of samples revealed detrital particles (quartz, feldspar, muscovite, carbonate and non-carbonate rock fragments and clay minerals (illite, chlorite, kaolinite, smectite)), as well as organic/biogenic components (i.e. bivalves, gastropods, ostracods) and non-skeletal particles (i.e. mud peloids). Several factors (e.g. TOC, organic matter type, biota content) suggest that these sediments were deposited under markedly different redox conditions, namely: (1) shelf and slope settings (oxic sediments), (2) basin plain settings (dysoxic sediments). The dysoxic sediments are enriched in type II organic matter (OM) with high TOC content (>1wt. %) while the oxidized sediments are enriched in infaunal organisms (i.e. ostracods and gastropods), and contain type III OM with low TOC content (<1wt. %). These evidences suggest better preservation of OM in the basin plain setting (deeper areas). Type III OM implies terrestrial input to the shelf and slope.

کلیدواژه‌ها [English]

  • Organic geochemistry
  • depositional setting
  • total organic carbon
  • terrestrial organic matter
  • South Caspian Basin
[1]   لاهیجانی، ع. ح (1384) کارگاه آموزشی تاثیر نوسان تراز آب دریای خزر بر اکوسیستم­های ساحلی، دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس، 47 ص.
[2]   موسوی روحبخش، م (1380) زمین­شناسی دریای خزر، سـازمان زمـین­شناسی کشور، طـرح تـدوین کـتاب زمین­شناسی ایران، شماره 80، 254 ص.
[3]  Al-Sharhan, A. S., and Kendall, C. G. St. C (2003) Holocene coastal carbonates and evaporates of the southern Persian Gulf and their ancient analogues. Earth- Science  Reviews, v. 61, 191-243.
[4]  Arthur, M. A., and Sageman, B. B (2005) Sea-level control on source-rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and The late Devonian Appalachian Basin. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. SP. Pub. No. 82 SEPM, Tulsa, pp. 35-59.
[5]  Awosika, L. F., Al-Ghadban, A. N., Ahmad, M. H. & Adegbia, A. F (1993) Assesment of sediment foraminifera and current monitoring data collected during the 100 day ROPME, IOC/NOAA cruise; implications for transport dynamics in the ROPME sea area. – Final report of the scientific workshop on results of the RIV MT. Mitchell cruise in the ROPME sea area, 1: 241-252.
[6]  Baudin, F., Disnar, J. R., Martine, P., and Dennielou, B (2010) Distribution of the organic matter in the channel-Levees systems of the Congo mud-rich deep sea fan (West Africa): implication fordeep offshore petroleum source rocks and global carbon cycle. Marine and Petroleum Geology, v. 27, 995-1010.
[7]  Behbahani, R., Hosseinyar, G., Lak, R (2015) The controlling  parameters on organic matter preservation within the bottom sediments of the northern part of the Persian Gulf. N. Jb. Geol. Palaont. Abh., v. 276, 267-283.
[8]  Brunet, M. F.; Korotaev, O.; Ershov, A. V.; Nikishin, A. M (2003) The South Caspian Basin: a review of its evolution from subsidence modeling. Sedimentary geology, v. 156, 119-148.
[9]  Creaney, S., and Passey, Q. R (1993) Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association of Petroleum Geologist Bulletin, v. 77, 386- 401.
[10]   Demaison, G.J., Murris, R.J., and Huizinga, B.J (1984) Petroleum geochemistry and basin evaluation. AAPG Memori 35.
[11]   Folk, R. L (1974) Petrology of sedimentary rocks. Texas (Hemphill publishing company) 182p.
[12]   Gani, M. R (2003) Crisis for a general term referring to all types of sediment gravity flow deposits: gravite: Geological Society of America, Abstracts with programs, v. 34, No. 7, 171 p.
[13]   Goddard, D. A., Mancini, E. A., Talukar, S. C. & Horn, M (1997) Bossier – Hanesvill shale, North Louisian Salt basin. – Lousiana State University, Baton Rouge, Louisiana, center for energy, PDF file, http:// www. Api. Ning. Com/ files, 46.  Accessed 2 Jun 1997.
[14]   Harris, N.B (2005) The deposition of organic carbon rich sediments: models, mechanisms and  consequences-   introduction. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. SP. Pub. No. 82 SEPM, Tulsa, pp. 1-5.
[15]   Harris, N.B., Freeman, K.H., Pancost, R.D., Mitchell, G.D., White, T.S., Bate, R.H (2005) Patterns of organic carbon enrichment in a lacustrine source rock in relation to paleo-lake level, Congo Basin, West Africa. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. SP. Pub. No. 82 SEPM, Tulsa, pp. 103-123.
[16]   Hunt, J. M (1995) Petroleum geochemistry and geology.  Freeman, New York, 743 p.
[17]   Ibach, L.E.J (1982)Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, v. 66, 170- 188.
[18]   Langford, F. F. & Blanc-Valleron, M. M (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. – American Association of Petroleum Geologists Bulletin, v. 74: 799-804.
[19]   Lewis, C. F. M., Mayer, L. A.,   Mukhopadhyay, P. K., Kruge, M. A., and Coakley, J. P (2000) Multi beam sonar backscatter  lineaments and anthropogenic organic components in lacustrine silty clay, evidence of shipping in western lake Ontario. International Journal of coal Geology, v. 43, 307-324.
[20]   Leroy, S.A.G., Tudryn, A., Chalie, F., Merino, L.L., Gasse, F (2013) From the Allerd to the mid-Holocene: palynological evidence from the south basin of the Caspian Sea. Quaternary Science Reviews, v.78, 77-97.
[21]   Leroy, S.A.G., Marretb, F., Gibertc, E., Chalie´d, F., Reysse, J.-L., Arpef, K (2007) River inflow and salinity changes in the Caspian Sea during the last 5500 years. Quaternary Science Reviews, v. 26, 3359–3383.
[22]   Meyers, P. A (2003) Applications of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurentian Great Lakes. – Organic Geochemistry, v. 34: 261- 289.
[23]   Meyers, P. A (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, v.27, 213-250.
[24]   Morton, A. M., Allen, M., Simmons, F., Spathopoulos, J., Still, D., Hinds, H., Ismalzadeh, A., Kroonenberg, S (2003) Provenance patterns in a neotectonic basin: Pliocene and Quaternary sediment supply to the South Caspian. Basin research, v.15, 321-337.
[25]   Nichols, G (2009) Sedimentology and stratigraphy, 2nd edition, Chichester, UK; Blackwell Science, 432 p.
[26]   Paropkari, A., Prakash, C., and Mascarenhas, A (1993) New evidence for enhanced preservation of organic carbon in content with oxygen minimum zone on the Western continental slope of India. Marin geology, v. 111, 7-13.
[27]   Patience, A. J., Lallier-Verges, E., Alberic, P., Desprairies, A. & Tribovillard, N (1996) Relationships between organo-mineral and early diagenesis in the Lacustrine environment: A study of surficial sediments from the Lac du Bouchet (France).- Quaternary Science Reviews, v.15: 213-221.
[28]   Pratima, M., Kessarkar, L., and Purchandra, R (2007) Organic carbon in sediments of the southwestern margin of India: influence of productivity and Monsoon variability during the late Quaternary. Journal Geological Society of India, v. 69, 42-52.
[29]   Reynolds, R. M (1993) Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of the Oman, Results from the Mt Mitchell expedition the 1991 Gulf war: coastal and marine environmental consequences. Marine Pollution Bulletin, v. 27: 35-59.
[30]   Sifeddine, A., Gutierrez, L., Ortlieb, L., Boucher, H., Velazco, F., Field, D., Vargas, G., and Boussafir, M (2008) Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system produvtivity, terrestrial run off and redox conditions. Progress in Oceanography, v. 79, 190- 197.
[31]   Tsuchida, K., Okui, A., Yamade, Y., Yamazaki, N., and Iwahashi, R (2005) The application of alinked physical ocean circulation-ecosystem model to prediction of organic-carbon sedimentation in lake Tanganyika, East African Rift system. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. SP. Pub. No. 82 SEPM, Tulsa, pp. 243-259.
[32]   Tuzhilkin, V. S., Katunin, D. N., and Nalbandov, Y. R (2005) Natural chemistry of Caspian Sea waters. In: Hutzinger, O., (Eds.), the handbook of environmental chemistry, v.5, water pollution, part p, 83-108.
[33]   Tuzhilkin, V. S., and Kosarev, A. N (2005) Thermohaline structure and general circulation of the Caspian Sea waters. In: Hutzinger, O., (Eds.), the handbook of environmental chemistry, v.5, water pollution, part p, 33-57.
[34]   Tyson, R.V (2001) Sedimentation rate, dilution, preservation and total organic carbon, some results of a modeling study. Organic Geochemistry, v. 32, 333- 339.