محیط رسوبی سازند قلی در حوضه البرز (ناحیه رباط قره‌بیل)، شمال خاور ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس/سازمان زمین شناسی کشور

2 انستیتوی مهندسی نفت، دانشکده فنی، دانشگاه تهران، تهران

3 گروه زمین‌شناسی، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران

4 پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران

5 سازمان زمین‌شناسی و اکتشافات معدنی کشور، مرکز کردستان، سنندج

10.22084/psj.2019.17996.1192

چکیده

این مطالعه بر اساس مشاهدات صحرایی، پتروگرافی برش‌های نازک، ساخت‌های رسوبی و مطالعات پالینولوژیکی صورت گرفته است. بر اساس مطالعات انجام‌شده 4 مجموعه رخساره سنگی شناسایی گردید. سازند قلی در منطقه مورد مطالعه از تناوب شیل‌های -ضخیم تا نازک‌لایه، ماسه‌سنگ‌های ‌متوسط تا نازک‌لایه، سنگ‌آهک‌های ماسه‌ای، سیلتستون‌های لامینه‌ای و سیل دیابازی تشکیل شده است. این مجموعه رخساره‌های سنگی از آرکوز-ساب‌آرکوز، سنگ‌آهک آلوکم‌دار ماسه‌ای، سیلتستون و شیل تشکیل شده است. با توجه به ویژگی رخساره‌های سنگی، ساخت‌های رسوبی و تغییرات عمودی رخساره‌های سازند قلی، یک شلف تحت تاثیر امواج و توفان به عنوان محیط رسوب‌گذاری این سازند پیشنهاد می‌شود. بر این اساس، محیط رسوبی سازند قلی از پهنه ساحلی تحتانی با رخساره‌های تحتانی و میانی (با چینه‌بندی مورب پشته‌ای، سطح فرسایشی، لامیناسیون موازی و لامیناسیون مورب ریپلی) تدریجا" به یک پهنه ساحلی فوقانی با رخساره فوقانی (با چینه‌بندی مورب تقعری، ریپل‌مارک موجی، لامیناسیون موازی، دانه‌بندی تدریجی عادی، لامیناسیون مورب تابولار و گوه‌ای شکل) تحول یافته است که جریان‌های ناشی از توفان و امواج نقش بسزایی در فرایند‌های حمل و نقل رسوبات و ته‌نشینی مجدد آن‌ها ایفا نمودند. هم‌چنین، بررسی‌های آماری بر روی پارامترهای پالینولوژیکی شامل درصد فیتوکلاست، مواد آلی بی‌شکل و پارامتر تغییرپذیری نشان-دهنده یک روند عمومی کم ‌ژرفا‌شونده از قاعده به سمت راس توالی مورد مطالعه است. مقایسه فراوانی نسبی پالینومورف‌های دریایی با عناصر پالینولوژیکی خشکی نشان‌دهنده فراوانی کم‌تر آکریتارک‌ها و کیتینوزواها نسبت به کریپتوسپورها و خرده‌های گیاهی است که نشان‌گر نهشته شدن سازند قلی در محیط دریایی کم‌ژرفا است.

کلیدواژه‌ها


عنوان مقاله [English]

Depositional environment of the Qelli Formation in Alborz Basin (Robat-e-Qarabil Area), NE Iran

نویسندگان [English]

  • R. Behbahani 1
  • M. Ghavidel-syooki 2
  • S. Borji 3
  • M. R. Majidifard 4
  • M. Yousefi 5
چکیده [English]

In present research, depositional environment of the Qelli Formation (Late Ordovician) was investigated in NE Alborz Basin (Robat-e-Qarabil Area; Kuh-e-Kurkhud). This study was performed based on field observations, thin sections petrography, sedimentary structures and palynological studies. Utilizing this multidisciplinary approach, four litofacies assemblages were recognized. The Qelli Formation in studied area comprises alternation of thick to thin shale beds, medium to thin bedded sandstones, sandy limestones, laminated siltstones and diabasic sill. These lithofacies assemblages consist of arkose-subarkose, sandy allochem limestone, siltstone and shale. According to the properties of lithofacies, sedimentary structures and vertical stacking of these lithofacies suggest a storm and wave dominated shelf, wherein the depositional setting evolved from lower shoreface with lower- middle lithofacies (with hummocky cross stratification, truncation surface, parallel lamination and cross lamination) that gradually changed into upper shoreface with upper lithofacies (with swaley cross stratification, wave ripple-mark, parallel lamination, normal grading, wedge-shaped and tabular cross-lamination) which storm and waves induced currents had important roles in sediment reworking and redeposition. Using the Tyson diagram, four palynological facies (III, IVa, V and VII) were identified. Meanwhile, statistical studies on the palynological parameters (percentage of phytoclast, amorphous organic matter and lability parameter) indicate a shallowing upward trend in Ghelli Formation. Comparison of the relative abundance of marine palynomorphs with terrestrial palynological elements indicate less abundance of acritarchs and chitinozoans in comparison with cryptospores and plant fragments which indicate that Qelli Formation is deposited in shallow marine environment.

کلیدواژه‌ها [English]

  • Qelli Formation
  • Alborz Basin
  • Depositional environment
  • Sedimentary structure
  • Litofacies

برجی، س (1396) پالینواستراتیگرافی و پالئوژئوگرافی رسوبات پالئوزوییک زیرین در ناحیه رباط قره­بیل واقع در شمال خاوری سلسله جبال البرز. پایان­نامه دکـتری رشـته چینه­شناسی و فسیل­شناسی، دانشگاه آزاد اسلامی، واحد تهران شمال، 345 ص.

جلیلیان، ع. ح (1395) نهشته­های پیراکشندی و توفانی در برش الگوی سازند خانه­کت، تریاس زاگرس بلند، خاور شیراز. دو فصل­نامه رسوب­شناسی کاربردی، دوره 4، شماره. 7، ص. 18-31.

خزائی، ا.، محمودی­قرائی، م. ح.، محبوبی، ا.، طاهری، ج (1396) رخساره­های توفانی در بخش آغازین سازند نیور (سیلورین پایینی) در جنوب غرب کاشمر. دوفصل­نامه رسوب­شناسی کاربردی، دوره 5، شماره. 9، ص. 74-85.

درخشی، م.، قاسمی، ح.، سهامی، ط (1393) زمین­شناسی و سنگ­شناسی مجموعه بازالـتی سلطان­مـیدان در رخنمون­های شمال و شمال خاور شاهرود، البرز خاوری، شمال ایران. فصل­نامه علوم­زمین، شماره. 91، ص. 63-76.

سهیلی، م.، افشار­حرب، ع (1359) نقشه زمین­شناسی کوه کور­خود با مقیاس 1:250000. سازمان زمین­شناسی و اکتشافات معدنی کشور.

صالحیان، ش (1390) بررسی پترولوژی و ژئوشیمی سنگ­های آذرین مافیک موجود در شیست­های گرگان. پایان­نامه کارشناسی­ارشد پترولوژی، دانشگاه صنعتی شاهرود، 175 ص.

طاهری، ع.، حیدرنیا، ح (1383) چینه­نگاری و محیط­رسوبی سازند قلی در ناحیه دهملا. هشتمین همایش انجمن زمین­شناسی ایران، دانشگاه صنعتی شاهرود، 10 ص.

قاسمی، ح.، درخشی، م (1387) کانی­شناسی، ژئوشیمی و نقش فرایند جدایش مکانیکی بلور­های الیوین در تشکیل سنگ­های آذرین پالئوزوییک زیرین منطقه شیر­گشت؛ شمال باختر طبس، ایران مرکزی. مجله بلور­شناسی و کانی­شناسی ایران، شماره. 2، ص. 207-224.

قاسمی، ح.، کاظمی، ز (1392) محیط زمین­ساختی و خصوصیات محل منشا سنگ­های آذرین موجود در سازند ابرسج (اردوویسین بالایی)، البرز خاوری، شمال شاهرود. مجله بلور­شناسی و کانی­شناسی ایران، شماره. 2، ص. 319-330.

قاسمی، ح.، کاظمی، ز.، صـالحیان، ش (1394) مـقایسه سنگ­های آذرین مافیک سازند قلی (اردویسین بالایی) و شیست­های گرگان در پهنه البرز خاوری. فصل­نامه علوم زمین، شماره. 96، ص. 263-276.

قویدل­سیوکی، م.، خندابی، م (1391) پالینواستراتیگرافی و پالئوژئوگرافی سازند­های لشکرک و قلی واقع در ناحیه ابرسج، شمال باختر شاهرود. پژوهش­های چینه­نگاری و رسوب­شناسی، شماره. 49، ص. 35-58.

Alavi, M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics, 21: 1-33.

Basilici, G., Vieira de Luca, P. H., Poire, D. G (2012) Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera): A turbiditic deep-water or storm-dominated prodelta inner-shelf system? Sedimentary Geology, 267 (268): 73-92.

Chakraborty, P. P., Sarkar, A., Das, K., Das, P (2009) Alluvial fan to storm-dominated shelf transition in the Mesoproterozoic Singhora Group, Chattisgarh Supergroup, Central India. Precambrian Research, 170: 88-106.

Chaudhuri, A. K (2005) Climbing ripple structure and associated storm-lamination from a Proterozoic carbonate platform succession: their environmental and petrogenetic significance. Journal of Earth System Science, 3: 199-209.

Courtinat, B., Piriou, S., Rio, M (2003) Phytoclasts in palynofacies definition: the example of Rhaetian sedimentary organic matter in SE France. Revue de micropaleontology, 46: 11-21.

Demaison,G. J., Moore, G. T (1980) Anoxic environments and oil source bedgenesis. The AAPG Bulletin, 64: 1179-1209.

Einsel, G., Seilacher, A (1991) Distinction of tempestites and turbidites. In: Einsele, G., Ricken, W., Seilacher, A. (EDS.), cycles and events in stratigraphy. Springer-Verlag, Berlin, 377-383.

El Atfy, H., Abeed, Q., Uhl, D., Littke, R (2016) Palynology, palynofacies analysis, depositional environments and source rock potential of Lower Cretaceous successions in southern Iraq. Marine and Petroleoum Geology, 76: 362-376.

Ercegova, M., Kostic, A (2006) Organic facies and palynofacies: Nomenclatute, classification and applicability for petroleum source rock.International Journal of Coal Geology, 68: 70-78.

Ghavidel-Syooki, M., Borji, S (2018) Chronostratigraphy of acritarchs and chitinozoans from upper Ordovician strata from the Robat-e Gharabil Area, NE Alborz Mountains, Northern Khorassan Province: stratigraphic and paleogeographic implications. Journal of Sciences, Islamic Republic of Iran, 29: 35-51.

Ghavidel-Syooki, M., Hassanzadeh, J., Vecoli, M (2011) Palynology and isotope geochronology of the Upper Ordovician-Silurian successions (Gheli and Soltan Maidan Formations) in the Khoshyeilagh Area, Eastern Alborz Range, northern Iran; stratigraphic and palaeographic implications. Review of Palaeobotany and Palynology, 164: 251-271.

Golonka, J., Ross, M. I., Scotese, C. R (1994) Phanerozoic paleogeographic and paleoclimatic modeling maps. In: Embry, A. F., Beauchamp, B., Glass, D. J. (EDS.), Pangea: global environments and resources. Canadian Society of Petroleum Geology, Memoir, 17: 1-47.

Green, A. N., Ovechkina, M. N., Mostovski, M. B (2012) Late Holocene shoreface evolution of the wave dominated Durban Bight, KwaZulu-Natal, South Africa: a mixed storm and current driven system. Continental Shelf Research, 49: 56-64.

Hobday, D. K., Morton, R. A (1984) Lower Cretaceous shelf storm deposits, northeast Texas. In: Tillman, R. W., Siemers, C. T. (EDS.), Siliciclastic shelf sediments. Society of Economic Paleontologists and Mineralogists, Special Publication, 34: 205-213.

Huc, A. Y (1991) Deposition of organic facies. AAPG studies in Geology, no. 30, 237 p.

Jansonious, J., McGregor, D. C (2002) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, 561 p.

Johnson, H. D., Baldwin, C. T (1986) Shallow siliciclastic seas. In: Reading, H. G. (ED.), Sedimentary environments and facies, 2 nd edition. Black-Well, Oxford, 229-282.

Kreisa, R. D (1981) Storm-generated sedimentary structures in subtidal marine with examples from the Middle and Upper Ordovician of southwestern Virginia. Journal of Sedimentary Petrology, 51: 823-848.

Li, F., Zhang, H., Jing, Z., Cheng, X (2017) Paleoenvironmental analysis of the ichnogenus Zoophycos in the Lower Devonian tempestite sediments of the Longmenshan area, Sichuan, China. Palaeogeography, Palaeoclimatology, Palaecology, 465: 156-167.

Liu, X., Zhong, J. H., Grapes, R., Bian, S. H., Liang, C (2012) Late Cretaceous tempestite in northern Songliao Basin, China. Journal of Asian Earth Sciences, 56: 33-41.

Mishra, S., Singh, V (2018) Palynology, palynofacies, and taphonomical studies of Kamthi Formation, (Godavari Graben), southern India: Implications to biostratigraphy, palaeoecology, and depositional environment. International Journal of Coal Geology, 195: 102-124.

Mohseni, H., Al-Aasm, I. S (2004) Tempestite deposits from a storm influenced carbonate ramp: an example from the Pabdeh Formation, Zagros Basin, SW Iran. Journal of Petroleum Geology, 27: 163-178.

Mount, J (1985) Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology, 32: 435-442.

Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., Berra, F (2009) The drift history of Iran from the Ordovician to the Triassic. In:  Brunet, M. F., Wilmsen, M., Granath, J. W. (EDS.), South Caspian to Central Iran basins. Geological Society of London, Special Publication, 312: 7-29.

Myrow, P (2016) Sedimentary environments: storms and storm deposits. Reference Module in Earth Systems and Environmental Sciences, 580-587.

Nichols, G (2009) Sedimentology and stratigraphy, 2nd edition. Wiley-Blackwell, Chichester, 419 p.

Nummedal, D (1991) Shallow marine storm sedimentation- the oceanographic perspective. In: Einsele, G., Ricken, W., Seilacher, A. (EDS.), cycles and events in stratigraphy. Springer-Verlag, Berlin, 227-248.

Oboh-Ikuenobe, F. E., Villiers, S. E (2003) Dispersed organic matter in samples from the western continental shelf of Southern Africa: palynofacies assemblages and depositional environments of Late Cretaceous and younger sediments. Palaeogeography, Palaeoclimatology & Palaeocology, 201: 67-88.

Paris, F., Thusu, B., Rasul, S., Meinhold, G., Strogen, D, Howard, J. P., Abutarruma, Y, El gadry, M., Whittam, A. G (2012) Palynological and palynofacies analysis of early Silurian shales from borehole CDEG-2a in Dor el Gussa, eastern Murzuq Basin, Libya. Review of Palaeobotany and Palynology, 174: 1-26.

Pettijohn, F. J., Potter, P. E., Siever, R (1987) Sand and sandstone, 2nd edition. Springer-Verlag, New York, 553 p.

Phipps, D., Playford, G (1984) Laboratory techniques for extraction of palynomorphs from sediments. Papers, Department of Geology, University of Queensland., 11:  23 p.

Puga, A., Aguirre, B. J (2017) Contrasting storm-versus tsunami-related shell beds in shallow-water ramps. Palaeogeography, Palaeoclimatology, Palaecology, 471: 1-14.

Reading, H. G (1996) Sedimentary environment: processes, facies and stratigraphy, 3rd edition. Black-Well, Oxford, 589 p.

Seilacher, A., Aigner, T (1991) Storm deposition at the bed, facies, and basin scale: the geologic perspective. In: Einsele, G., Ricken, W., Seilacher, A. (EDS.), cycles and events in stratigraphy. Springer-Verlag, Berlin, 249-267.

Soria, J. M., Gianneti, A., Monaco, P., Corbi, H., Garcia-Ramos, D., Viseras, C (2014) Cyclically-arranged, storm-controlled, prograding lithosomes in Messinan terrigenous shelves (Bajo Segura Basin, Western Mediterranean). Sedimentary Geology, 310: 1-15.

Staplin, F. L (1961) Reef-controlled distribution of Devonian microplankton in Alberta. Palaeontology, 4: 392-424.

Swift, D. J. P., Hudelson, P. M., Brenner, R. L., Thompson, P (1987) Shelf construction in a foreland basin: storm beds, shelf sandbodies, and shelf-slope depositional sequences in the Upper Cretaceous Mesaverde Group, Book Cliffs, Utah. Sedimentology, 34: 423-457.

Tonkov, S (2003) Aspects of Palynology and Palaeoecology: Festschrift in Honour of Elissaveta Bozilova, 282 p.

Traverse, A (2007) Palaeopalynology, 2nd edition. Springer, 814 p.

Tyson, R. V (1995) Sedimentary organic matter: Organic facies and palynofacies. Springer, Netherlands, 615 p.

Tyson, R. V (1993) Palynofacies analysis. In: Jenkins, D. J. (ED.), Applied Micropalaeontology. Kluwer Academic Publishers, Dordrecht, 269 p.

.Vakarelov, B. K., Ainsworth, R. B., Mac Eachern, J. A (2012) Recognition of weve-dominated, tide-influenced shoreline systems in the rock record: variations from a microtidal shoreline model. Sedimentary Geology, 279: 23-41.

Van der Zwan, C. J (1990) Palynostratigraphy and palynofacies reconstruction of the Upper Jurassic to lowermost Cretaceous of the Draugen Field, offshore mid Norway. Review of Palaeobotany and Palynology, 62: 157–186.

Van Loon, A. J (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15: 3-55.

Walker, R. G., Plint, A. G (1992) Terrigenous clastic facies models. In: Walker, R. G., James, N. P., (EDS.), Facies models: response to sea-level change, Geological Association of Canada, 73-264.

Wang, J., Xie, X., Pang, X., Liu, B (2017) Storm-reworked shallow-marine fans in the Middle Triassic Baise area, South China. Sedimentary Geology, 349: 33-45.

Wendt, J., Kaufmann, B., Belka, Z., Farsan, N., Bavandpur, A (2005) Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran. Part II. Nirth and central Iran. Acta Geologica Polonica, 55: 31-97.