ریزرخساره‌ها، محیط‌های رسوبی و فرآیندهای دیاژنزی سازند ایلام در دو طرف گسل‌های بالارود و پیشانی کوهستان (جنوب ناحیه لرستان و شمال دزفول شمالی)

نویسندگان

1 دانشجوی دکترا، گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران؛ مدیریت اکتشاف شرکت ملی نفت ایران، تهران، ایران

2 استاد گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران

3 مدیریت اکتشاف شرکت ملی نفت ایران، تهران، ایران

چکیده

در این پ‍ژوهش سازند ایلام در چهار برش سطحی (کبیرکوه، سمند، انجیر و اناران) و هشت چاه در حوضه لرستان ، دزفول شمالی و دشت آبادان به ضخامت کلی 1592 متر مورد مطالعه رسوب‌شناسی قرار گرفت. این سازند به سن سانتونین- کامپانین پیشین از مخازن‌ نفتی کربناته مهم در حوضه زاگرس در جنوب باختر ایران می‌باشد. مطالعه میکروسکوپی منجر به شناسایی تعداد 20 ریزرخساره کربناته در چهار کمربند رخساره‌ای شده است. رخساره‌های رسوبی در کمربندهای رمپ داخلی (سدی)، رمپ میانی، رمپ خارجی و دریای باز ژرف از نوع رمپ با بخش انتهایی شیب‌دار نهشته‌شده­اند. کمربند رخساره‌ای حوضه عمیق بیش­ترین گسترش را در ناحیه و کمربند رخساره‌ای رمپ داخلی (سدی) کمترین گسترش را دارد و به ‌صورت محدود در چاه‌های دشت آبادان و دزفول شمالی مشاهده شده‌ است. بررسی نتایج مطالعات رخساره‌ای و تغییرات نمودارهای الکتریکی نشان می‌دهد که حوضه رسوبی به‌سمت شمال ناحیه مورد مطالعه و پس از گسل بالارود در ناحیه لرستان عمیق‌تر می‌شود. مهم­ترین فرآیندهای دیاژنزی سازند ایلام شامل سیمانی‌شدن، میکریتی‌شدن، تراکم شیمیایی، رگه انحلالی، نوشکلی، انحلال، شکستگی، پیریتی‌شدن، فسفانی‌شدن، گلوکونیتی‌شدن، آشفتگی زیستی و دولومیتی‌شدن می‌باشد. سیمانی‌شدن بیشتر در رخساره کم عمق در دشت آبادان و تراکم شیمیایی، پیریتی‌شدن و شکستگی عمدتا در رخساره‌های عمیق توالی ایلام در ناحیه لرستان گسترش دارد. فراوانی انواع تخلخل‌ها محدود بوده ولی بیش­ترین گسترش مربوط به تخلخل حاصل از شکستگی، درون‌دانه‌ای و ریزتخلخل میکروسکوپی است. مقایسه فرآیندهای دیاژنتیکی نشانگر این است که کربنات‌های سازند ایلام در ناحیه لرستان بیشتر تحت تاثیر دیاژنز تدفینی قرار گرفته است. ولی در ناحیه دشت آبادان و دزفول شمالی بیشتر در معرض دیاژنز دریایی و جوی بوده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Microfacies, depositional environments and diagenetic processes of the Ilam formation in both sides Balarud and Zagros mountain front faults (South of Lurestan area and north of north Dezful)

نویسندگان [English]

  • A. Bakhshi 1
  • M. H. Adabi 2
  • A. Sadeghi 2
  • M. A. Kavoosi 3
1 Ph. D. student., Dept., of Sedimentary Basins and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran, National Iranian Oil Company, Tehran, Iran
2 Prof., Dept., of Sedimentary Basins and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 National Iranian Oil Company, Tehran, Iran
چکیده [English]

This research is based on sedimentological study of 4 surface (Kabir kuh, Samand, Anjir and Anaran) and 8 subsurface wells in the Lurestan, North Dezful and Abadan plain with a total thickness of 1592 m. The Santonian – Lower Campanian Ilam Formation is a carbonate hydrocarbon reservoir in the Zagros fold – thrust belt, in SW Iran. Twenty microfacies were recognized based on microscopic study. Microfacies analysis led to the recognition of four facies belts including inner (shoal), mid, outer ramp, and basinal setting. Correlation of depositional environments together with lateral facies changes indicate deposition are distally steepend ramp. Deep marine and inner ramp facies are the most and least facies, respectively in the study area. As the distribution of inner ramp facies is very limited, it can only be recognized in wells from North Dezful and Abadan plain. The results obtained from facies together with analyses of wireline logs clearly shows a northward deepending of the depositional environment from Balarud Fault. Cementation, micritization, compaction, solution seams, neomorphism, disolution, fracturing, pyritization, phosphatization, gluconitization and bioturbation are the main diagentic processes. However, cementation is most dominant in shallow marine facies in the Abadan plain, whereas, pyritization, stylolite and fracture are the most prevailing processes in deeper marine facies of the Ilam Formation in Lurestan. There is a limited distribution of porosity, but the most dominant types are, interpartical, microporosity and fracture related porosity. The Ilam carbonates are mostly affected by shallow to deep burial diagenesis in Lurestan, whereas, in the Abadan plain and North Dezful, the marine and meteoric diagenesis are the most dominant diagenetic types.

کلیدواژه‌ها [English]

  • Ilam formation
  • Microfacies
  • Lurestan
  • Inner ramp
  • Abadan plain
  • Diagenesis
آقانباتی، ع (1390) زمین‌شناسی ایران. انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور. 586 ص.
مطیعی، ه (1382) زمین­شناسی ایران: چینه­شناسی زاگرس. انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور. 583 ص.
Adabi, M. H., and Mehmandosti, E. A (2008) Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, SW Iran. Journal of Asian Earth Sciences, 33(3-4): 267-277.
Adabi, M. H (2009) Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet- Dagh, N. E. Iran. Carbonates and Evaporites: 20:16-32.
Adabi, M. H., Salehi, M. A., and Ghabeishavi, A (2010) Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Journal of Asian Earth Sciences, 39(3): 148-160.
Ahr, W. M (2008) Geology of Carbonate Reservoirs. The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. John Wiley and Sons, Inc., Publication. 277.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science, 304(1): 1-20.
Al-Dabbas, M., Al- Jassim, J., and al-Jummaily, S (2009) Depositional environments and porosity distribution in regressive limestone reservoirs of the Mishrif Formation, Southern Iraq. Arabian Journal Geoscience, 3: 67-78.
Amorosi, A (1997) Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology, 109(1-2): 135-153.
Asadi Mehmandosti, E., Abdolmaleki, S. and Ghalavand, H (2017) Microfacies, sedimentary environment and diagenesis of the Ilam Formation in an Oilfield of the Abadan plain. Applied Sedimentology, 5(9): 21-39.
Awais, M., Hanif, M., Khan, M. Y., Jan, I. U., and Ishaq, M (2019) Relating petrophysical parameters to petrographic interpretations in carbonates of the Chorgali Formation, Potwar Plateau, Pakistan. Carbonates and Evaporites, 34(3): 581-595.
Bassi, D., and Nebelsick, J. H (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1-2): 258-280.
Barbier, M., Hamon, Y., Callot, J. P., Floquet, M., and Daniel, J. M (2012) Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Marine and Petroleum Geology, 29(1): 50-67.
Bover- Arnal, T., Salas, R., Moreno-Bedmar, J. A., and Bitzer, K (2009) Sequance Stratigraphy and Architecture of a late Early-Middle Aptian carbonate platform succession sedimentary Geology, 219 (1-4): 280-301.
Burchette, T. P., and Wright, V. P (1992) Carbonate ramp depositional systems. Sedimentary geology, 79(1-4):3-57.
Choquette, P. W., and Pray, L. C (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG bulletin, 54(2): 207-250.
Dickson, J. A. D (1966) Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36(2): 491-505.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional textures,108-121.
Folk, R. L (1962) Spectral subdivision of limestone types, in: Ham WE (ed) Classification of Carbonate Rocks- symposium. Tulsa, American Association of Petroleum Geologists, Memoir#1, 62-84.
Flügel, E., and Munnecke, A (2010) Microfacies of carbonate rocks: analysis, interpretation and application, Berlin: Springer. 984.
Gischler, E., aand Lomando, A. J (2005) Offshore sedimentary facies of a modern carbonate ramp, Kuwait, northwestern Arabian-Persian Gulf. Facies, 50(3): 443-462.
Ghabeishavi, A., Vaziri-Moghaddam, H., and Taheri, A (2009) Facies distribution and sequence stratigraphy of the Coniacian–Santonian succession of the Bangestan Palaeo-high in the Bangestan Anticline, SW Iran. Facies, 55(2): 243-257.
Goldhaber, M. B (2004) Sulfur-rich sediments. In: Mackenzie F. T. (ED), Sediments, Diagenesis and Sedimentary Rocks. Treatise on Geochemistry, Elsevier, Amsterdam: 257-288.
Hajikazemi, E., Al-Aasm, I. S., and Coniglio, M (2010) Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran. Geological Society, London, Special Publications, 330(1): 253-272.
Hesselbo, S. P., and Huggett, J. M (2001) Glaucony in ocean-margin sequence stratigraphy (Oligocene-Pliocene, offshore New Jersey, USA; ODP Leg 174A). Journal of Sedimentary Research, 71(4): 599-607.
Jamilpour, M., Mahboubi, A., Moussavi-harami, R., Khanehbad, M. and Hooshmand Koochi, H (2021) Distribution of reservoir electrofacieses in Asmari Formation sedimentary facieses-Qale Nar oilfield. Applied Sedimentology, 9(18).
Janjuhah, H. T., Alansari, A., Ghosh, D. P., and Bashir, Y (2018) New approach towards the classification of microporosity in Miocene carbonate rocks, Central Luconia, offshore Sarawak, Malaysia. Journal of Natural Gas Geoscience, 3(3): 119-133.
Jørgensen, B. B (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark) 1. Limnology and Oceanography, 22(5): 814-832.
Kavoosi, M. A (2014) Inorganic control on original carbonate mineralogy and creation of gas reservoir of the Upper Jurassic carbonates in the Kopet-Dagh Basin, NE, Iran. Carbonates and Evaporites, 29(4): 419-432.
Kavoosi, M. A., and Ezoji, N (2018) Facies, depositional environments, and sequence stratigraphy analysis of the upper Barremian-lower Aptian carbonates in the northeast Kelardasht, N Iran. Journal of African Earth Sciences, 147: 228-242.
Kavoosi, M. A., and Ezoji, N (2021) The Cenomanian heterozoan carbonates in the north-central Alborz, north-east Kelardasht, north Iran. Geological Quarterly, 65(3): 65-37.
Keller, G., Adatte, T., Stinnesbeck, W., Luciani, V., Karoui-Yaakoub, N., and Zaghbib-Turki, D. (2002) Paleoecology of the Cretaceous–Tertiary mass extinction in planktonic foraminifera. Palaeogeography, Palaeoecology, Palaeoclimatology, 178(3-4): 257-297.
Khodaei, N., Rezaee, P., Honarmand, J., and Abdollahi-Fard, I (2020) Microfacies analysis, sedimentary environment and sequence stratigraphy of the Ilam Formation (Coniacian? -Santonian) in the northwestern part of the Abadan Plain. Journal of Stratigraphy and Sedimentology Researches, 36(4): 109-134.
Longman, M. W (1980) Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG bulletin, 64(4): 461-487.
Lønøy, A (2006) Making sense of carbonate pore systems. AAPG bulletin, 90(9): 1381-1405.
Lucia, F. J., and Loucks, R. G (2013) Micropores in carbonate mud: Early development and petrophysics, 2: 1–10.
Lucia, F. J (2007) Carbonate Reservoir Characterization, An Integrated Approach, and Second Edition: Springer Berlin, 336.
Lucia, F. J (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG bulletin, 79(9): 1275-1300.
Manojlovic, M., and Clapham, M. E (2021) The role of bioturbation-driven substrate disturbance in the Mesozoic brachiopod decline. Paleobiology, 47(1): 86-100.
Mehrabi, H., and Rahimpour-Bonab, H (2014) Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian–early Turonian carbonate reservoirs, Dezful Embayment, SW Iran. Facies, 60(1): 147-167.
Moore, C. H. and Wade, W. J (2013) Carbonate Reservoirs: Porosity and diagenesis in a sequence stratigraphic framework, Elsevier, 67: 347.
Motiei, H (1993) Geology of Iran: stratigraphy of Zagros. Geological survey of Iran, 1: 536.
Nichols, G (2009) Sedimentology and stratigraphy. John Wiley and Sons, 419.
North, F. K (1990) Petrolum Geology- Unwin- Hyman. Londan, 607.
Odin, G. S., and Letolle, R (1980) Marine phosphorites—Geochemistry, occurrence, genesis, 227-237.
Palma, R. M., López-Gómez, J., and Piethé, R. D (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza province) Neuquén Basin, Argentina: facies and depositional sequences. Sedimentary Geology, 195(3-4): 113-134.
Parandavar, M (2020) Biostratigraphy and micropaleontological study on the surface samples of the kuh-e Samand, kuh-e Anaran and Siah kuh Stratigraphic sections (South East Lurestan), Paleontological report No.966. Exploration Directorate Department of Paleontological Study and Researches in NIOC, 45.
Payros, A., Pujalte, V., Tosquella, J., and Orue-Etxebarria, X (2010) The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa–Andia Formation): an analogue of future shallow-marine carbonate systems? Sedimentary Geology, 228(3-4): 184-204.
Pöppelreiter, M (2002) Facies, cyclicity and reservoir properties of the Lower Muschelkalk (Middle Triassic) in the NE Netherlands. Facies, 46(1): 119-132.
Scholle, P. A., and Ulmer-Scholle, D. S (2006) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis, AAPG Memoir 77. AAPG. 578.
Schrank, C. E., Jones, M. M., Kewish, C. M., van Riessen, G. A., Elphick, K. E., Sloss, C. R., Nothdurft, L. D., Webb, G. E., Paterson, D. J. and Regenauer-Lieb, K (2021) Micro-scale dissolution seams mobilise carbon in deep-sea limestones. Communications Earth and Environment, 2(1): 1-10.
Schülke, I., and Popp, A (2005) Microfacies development, sea-level change, and conodont stratigraphy of Famennian mid-to deep platform deposits of the Beringhauser Tunnel section (Rheinisches Schiefergebirge, Germany). Facies, 50(3): 647-664.
Schulze, F., Kuss, J., and Marzouk, A (2005) Platform configuration, microfacies and cyclicities of the upper Albian to Turonian of west-central Jordan. Facies, 50(3): 505-527.
Sepehr, M. and Cosgrove, J. W (2004) Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum geology, 21(7): 829-843.
Tucker, M. E (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley and Sons. 260.
Tucker, M. E. and Wright, P. V (1990) Carbonate Sedimentology: Blackwell, Scientific Publication, London, 482.
Toussaint, R., Aharonov, E., Koehn, D., Gratier, J. P., Ebner, M., Baud, P., Rolland, A. and Renard, F (2018) Stylolites: A review. Journal of Structural Geology, 114: 163-195.
Vaziri-Moghaddam, H., Kimiagari, M., and Taheri, A (2006) Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies, 52(1): 41-51.
Villain, J. M (1975) ≪ calcisphaerulidae≫ (Incertae sedis) du Crétacé supérieur du Limbourg (Pays-Bas), et d'autres regions. Paleontographical Abteilung A, 193-242.
Visser, J. N (1993) Sea-level changes in a back-arc-foreland transition: the late Carboniferous-Permian Karoo Basin of South Africa. Sedimentary Geology, 83(1-2): 115-131.
Vita, G., Garilli, V., Vizzini, M. A., Giarrusso, R., Mulone, A., Vraca, M. P., and Sineo, L (2021) Geochemistry of phosphatic nodules as a tool for understanding depositional and taphonomical settings in a Paleolithic cave site (San Teodoro, Sicily). International Journal of Speleology, 50(3): 249-261.
Wilson, J. L (1975) Carbonate facies in geologic history. Springer Science & Business Media. 471.
Wu, G., Xie, E., Zhang, Y., Qing, H., Luo, X., and Sun, C (2019) Structural diagenesis in carbonate rocks as identified in fault damage zones in the northern Tarim Basin, NW China. Minerals, 9(6): 360.