رسوبات وچیاپینگین در شمال‌باختر و جنوب‌باختر ایران و تاثیرپذیری آن‌ها از فرونشینی تکتونیکی پرمین پسین

نویسنده

استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

رسوبات وچیاپینگین در ناحیه جلفا، شمال‌باختر ایران، و ناحیه آباده، جنوب‌باختر ایران، عمدتا متشکل از تناوب نهشته‌های شیلی و آهکی می‌باشد. توزیع ریز‌رخساره‌ها در دو برش آلی‌باشی و زال در ناحیه جلفا و دو برش مطالعه شده در دره همبست در ناحیه آباده نشان‌­دهنده محیط دریایی باز و نسبتا عمیق در موقعیت‌های رمپ میانی و بیرونی است. در برش‌های جلفا و آباده تغییرات فونایی و ریزرخساره‌ای بین نهشته‌های وچیاپینگین زیرین و بالایی کاملا مشهود بوده که ناشی از افزایش عمق حوضه و بالا آمدن سطح آب می‌باشد. با توجه به محتویات فونایی و نوع ریز‌رخساره‌های موجود در رسوبات وچیاپینگین در برش‌های مورد مطالعه، بخش­های زیرین وچیاپینگین دارای ویژگی­های رمپ میانی و بخش­های بالایی آن عمدتا یک محیط رمپ بیرونی را نشان می‌دهد. بر اساس نتایج بدست آمده قبلی از منحنی‌های فرونشینی برای نواحی البرز و آباده، حادثه ریفتینگ پرمین آغازی با فرونشینی قوی در پرمین میانی و بالایی دنبال شد و با یک روند افزایش فرونشینی از شمال (البرز) به طرف جنوب (آباده) همراه بوده است. این فرآیند افزایش فرونشینی تکتونیکی، افزایش ضخامت توالی­ها از شمال به سمت جنوب را نشان می‌دهد که در نهشته‌های وچیاپینگین دو ناحیه جلفا و آباده نیز قابل شناسایی است، بطوریکه در ناحیه آباده ضخامت رسوبات وچیاپینگین در مقایسه با رسوبات همزمان خود در ناحیه جلفا 4 برابر بیش­تر است. با توجه به وضعیت ساختاری بلوک آباده-همبست و قرارگیری آن بین گسل­های نرمال و ایجاد گرابن در فاصله زمانی پرمین-تریاس تاثیر تکتونیک همزمان با رسوب­گذاری در این ناحیه مشهود است. افزایش ضخامت نهشته­ها در ناحیه آباده بیش­تر مربوط به بخش­های زیرین وچیاپینگین است و بخش­های بالایی آن که شامل واحد 6 سازند همبست است و تقریبا معادل با طبقات جلفای بالا در ناحیه جلفا می‌باشد اختلاف ضخامت قابل­توجهی را نشان نمی‌دهد. علاوه براین، افزایش فرونشینی تکتونیکی باعث بالا آمدن بیش­تر سطح آب دریا و عمیق­شدگی شده که با کاهش اندازه و تنوع براکیوپودها و فراوانی استراکدهای با پوسته کوچک و سوزن اسفنج در طبقات جلفای بالایی و فراوانی فونای پلاژیک نظیر کنودونت­ها و آمونوییدها در واحد 6 سازند همبست همراه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Wuchiapingian deposits in northwest and southwest of Iran and their susceptibility to Late Permian tectonic subsidence

نویسنده [English]

  • S. Arefifard
Assist. Prof., Dept., of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
چکیده [English]

Wuchiapingian deposits in Julfa area, NW Iran, and Abadeh area, SW Iran, are composed mainly of shale and limestone. The distribution of microfacies in Ali Bashi and Zal sections and two studied sections in Hambast Valley is suggestive of open marine and deep environment in mid and outer ramp settings. In Julfa and Abadeh areas, faunal and microfacies changes between Lower and Upper Wuchiapingian deposits are obvious and triggered by depth increasing and sea level rising. Considering the faunal contents and microfacies type of the Wuchiapingian deposits in the study areas, the lower parts of the Wuchiapingian strata yield a mid ramp setting while their upper parts are characteristic of outer ramp setting. Based on previously obtained results from tectonic subsidence curves for Alborz and Abadeh, the Early Permian rifting event was followed by strong subsidence in Middle and Late Permian and was associated with an increasing subsidence from North (Alborz) toward South (Abadeh). The increasing tectonic subsidence was also caused the increased thickness of deposits in a N-S trend as the thickness of Wuchiapingian deposits in Abadeh area are more than four times than those of coeval deposits in Julfa area. Considering the tectonic status of the Abadeh-Hambast Block and its situation between normal faults and formation of graben in the Permian-Triassic interval, the influence of syn-depositional tectonic is evident. This thickness increasing in Abadeh area is more evident in the lower Wuchiapingian deposits and the upper Wuchiapingian strata, Unit 6 of the Hambast Formation, has the same thickness as Upper Julfa Beds in Julfa area. Furthermore, the increasing of tectonic subsidence was led to sea level rising and deepening and caused the reduced size and diversity among brachiopods and abundance of small-sized ostracods and sponge spicules in the Upper Julfa Beds as well as pelagic fauna such as conodont and ammonoids in the Unit 6 of the Hambast Formation.

کلیدواژه‌ها [English]

  • Wuchiapingian
  • Julfa
  • Abadeh
  • Microfacies changes
  • Ramp environment
ابراهیم­نژاد، م. ثیاب­قدسی، ع. ا.، نیکروز، ر (1393) تحول رسوب­شناختی، میکروفاسیس و حساسیت مغناطیسی (MS) نهشته­های کربناتی پرمین در شمال ماکو، نشریه رسوب­شناسی کاربردی، دوره 2، شماره 3، ص 73-62. 
شاهین‌فر، س. یوسفی­یگانه، ب. عارفی‌فرد، س (1398) بررسی ریز‌رخساره­ها، تفسیر شرایط ته‌نشینی و تعیین مدل رسوبی نهشته­های اواخر پرمین میانی و مرز گوادالوپین-لوپینگین در ناحیه آباده ایران، غرب پالئوتتیس، نشریه رسوب­شناسی کاربردی، دوره 7، شماره 13، ص 148-131. 
Alavi, M. (1991) Tectonic Map of the Middle East. Tehran: Geological Survey of Iran.
Assereto, R. (1963) The Paleozoic Foraminifera in Central Elborz (Iran): Prelimnery Note. Rivista Italianadi Paleontologial Stratigrafia, 69: 503-543.
Baghbani, D (1993) The Permian sequence in the Abadeh region, central Iran. Contributions to Eurasian Geology, Occasional Publications, Earth Sciences Research Institute, University of South Carolina. 9B: 7-22.
Besse, J., Torcq, F., Gallet, Y., Ricou, L. E., Krystyn, L., Saidi, A (1998) Late Permian to Late Triassic
palaeomagnetic data from Iran: Constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International, 135(1): 77-92.
Burchette, T. P., Wright, V. P (1992) Carbonate ramp depositional systems Sedimentary Geology, 79: 3-57.
Chen, J., Shen, S-Z., Zhang, Y-C., Angiolini, L., Gorgij, M. N., Crippa, G., Wang, W., Zhang, H., Yuan, D-X., Li, X-H., Xu, Y-G (2020) Abrupt warming in the latest Permian detected using high resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109973.
Dunham, R. J., (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W E (Ed.), Classification of carbonate rocks: Tulsa, Oklahoma, U.S.A., American Association of Petroleum Geologists Memoir, 108-121.
Edgell, H. S., (1977) The Permian System as an oil and gas reservoir in Iran, Iraq and Arabia, Proceedings of Second Iranian Geological Symposium, Teheran, 161-201.
Flügel, E., (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application: Berlin, Heidelberg, New York, Springer-Verlag, 984p.
Garbelli, C., Angiolini, L., Shen, S-Z., Crippa, G., Yuan, D., Mahrammanesh, M., Abbasi, S., Birjandi, M (2014) Additional brachiopod findings from the Lopingian succession of the Ali Bashi Mountains, NW Iran. Rivista Italiana di Paleontologia e Stratigrafia, 120(1): 119-126.
Ghaderi, A., Garbelli, C., Angiolini, L., Ashouri, A. R., Korn, D., Rettori, R., Gharaie, M. H. M (2014a) Faunal change near the end-Permian extinction: the brachiopods of the Ali Bashi Mountains, NW Iran, Rivista Italiana di Paleontologia e Stratigrafia, 120: 27-59.
Ghaderi, A., Leda, L., Schobben, M., Korn, D., Ashouri, A. R (2014b) High-resolution stratigraphy of the Changhsingian (Late Permian) successions of NW Iran and the Transcaucasus based on lithological features, conodonts and ammonoids, Fossil Record, 17: 41-57.
Gliwa, J., Ghaderi, A., Leda, L., Schobben, M., Tomás, S., Foster, W. J., Forel, M-B., Ghanizadeh Tabrizi, N., Grasby, S. E., Struck, U., Ashouri, A. R., Korn, D (2020) Aras Valley (northwest Iran): high-resolution stratigraphy of a continuous central Tethyan Permian-Triassic boundary section. Fossil Record, 23: 33-69.
Hassanzadeh, J., Wernicke, B. P (2016) The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35: 586-621.
Haq, B. U., Schutter, S. R (2008) A chronology of Paleozoic sea-level changes. Science, 322(5898): 64-68.
Heydari, E., Hassanzadeh, J (2003) Deev Jahi model of the Permian-Triassic boundary mass extinction: a case for gas hydrates as the main cause of biological crisis on Earth. Sedimentary Geology, 163: 147-163.
Heydari, E., Hassandzadeh, J., Wade, W. J (2000) Geochemistry of central Tethyan upper Permian and lower triassic strata, abadeh region, Iran. Sedimentary Geology, 137: 85-99.
Horacek, M., Brandner, R., Abart, R (2007) Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr. Palaeogeography, Palaeoclimatology, Palaeoecology, 252: 347-354.
Korn, D., Ghaderi, A., Leda, L., Schobben, M., Ashouri, A. R (2016) The ammonoids from the Late Permian Paratirolites Limestone of Julfa (East Azerbaijan, Iran). Journal of Systematic Palaeontology, 14: 841-890.
Korte, C., Kozur, H. W., Joachimski, M. M., Strauss, H., Veizer, J., Schwark, L (2004) Carbone, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Sciences, 9: 565-581.
Korte, C., Pande, P., Kalia, P., Kozur, H. W., Joachimski, M. M., Oberhänsli, H (2010) Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. Journal of Asian Earth Sciences, 37: 293-311.
Kozur, H. W (1980) The main events in the Upper Permian and Triassic conodont evolution and its bearing to the Upper Permian and Triassic stratigraphy. Revista Italiana di Paleontologia e Stratigraphia, 85(3-4): 741-766.
Kozur, H. W (2004) Pelagic uppermost Permian and the Permian boundary conodonts of Iran. Part 1: Taxonomy. Hallesches Jahrbuch Geowissenschaften Reihe, B 18: 39-68.
Kozur, H. W (2005) Pelagic uppermost Permian and the Permian-Triassic boundary conodonts of Iran. Part II: Investigated sections and evaluation of the conodont faunas. Hallesches Jahrbuch Geowissenschaften Reihe, B 19: 49-86.
Kozur, H. W (2007) Biostratigraphy and event stratigraphy in Iran around the Permian–Triassic Boundary (PTB): implications for the causes of the PTB biotic crisis. Global and Planetary Change, 55 (1-3): 155-176.
Leda, L., Korn, D., Ghaderi, A., Hairapetian, V., Struck, U., Reimold, W. U (2014) Lithostratigraphy and carbonate microfacies across the Permian-Triassic boundary near Julfa (NW Iran) and in the Baghuk Mountains (Central Iran). Facies, 60: 295-325.
Mohtat-Aghai, P., Vachard, D (2003) Dagmarita shahrezahensis n. sp. globivalvulinid foraminifer (Wuchiapingian, late Permian, Central Iran). Revista Italiana di Paleontologia e Stratigraphia, 109: 37-44.
Mohtat-Aghai, P., Vachard, D (2005) Late Permian foraminiferal assemblages from the Hambast Region (Central Iran) and their extinctions. Revista Española de Micropaleontología, 37: 205-227.
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M., Zanchi, A (2009a) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14: 17-48.
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., Berra, F (2009b) The drift history of Iran from the Ordovician to the Triassic. In: Brunet, M-F, Wilmsen, M, Granath, J W (Eds.), South Caspian to Central Iran Basins: Geological Society, London, Special Publications, 312: 7-29.
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., Mohtat-Aghai, P (2010) Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution, Journal of Asian Earth Sciences, 39: 236-253.
Ruban, D. A., Al-Husseini, M. I., Iwasaki, Y (2007) Review of Middle East Paleozoic plate tectonics. GeoArabia, 12(3): 35-56.
Saidi, A., Brunet, M. F., Ricou, L. E (1997) Continental accretion of the Iran Block to Eurasia as seen from Late Paleozoic to Early Cretaceous subsidence curves. Geodinamica Acta, 10: 189-208.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., Korte, C (2014) Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Research, 26: 675-683.
Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D., Korte, C (2015) Flourishing ocean drives the end-Permian marine mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 112: 10298-10303.
Sedlacek, A. R., Saltzman, M. R., Algeo, T. J., Horacek, M., Brandner, R., Foland, K., Rhawn F., Denniston, R. F (2014) 87Sr/86Sr stratigraphy from the early triassic of Zal, Iran: linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 429: 779-782.
Sengör, A. M. C (1979) Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279: 590-593.
Shen, S-Z., Mei, S-L (2010) Lopingian (Late Permian) high resolution conodont biostratigraphy in Iran with comparison to South China zonation, Geological Journal, 45: 135-161.
Stepanov, D. L., Golshani, F., Stöcklin, J (1969) Upper Permian and Permian-Triassic Boundary in North Iran, Geolological Survey of Iran, Report, 12: 1-72.
Sweet, W. C., and Mei, S-l (1999a) The Permian Lopingian and basal Trassic Sequence in Northwest Iran, Permophiles, 33: 14-18.
Sweet, W. C., Mei, S. L (1999b) Conodont succession of Permian Lopingian and basal Triassic in Northwest Iran, In: Yin, H F, Tong, J N (Eds.), Proceedings of the International Conference on Pangea and the Palaeozoic-Mesozoic transition. China University Geosciences Press, Wuhan, 43-47. 
Teichert, C., Kummel, B., Sweet, W. C (1973) Permian-Triassic strata, Kuh-e-Ali Bashi, Northwestern Iran, Bulletin of the Museum of Comparative Zoology, Harvard University, 145: 359-472.
Taraz, H (1974) Geology of the Surmaq-Deh Bid area, Abadeh Region, Central Iran. Geological Survey of Iran Report, 37: 1-148.
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K-I., Maurata, M., Okimura, Y., Sakagami, S., Nakamura, K., Tukuoka, T (1981) The Permian and the Lower Triassic systems in Abadeh region, central Iran: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 47: 62-133.
Tucker, M. E., and Wright, V. P (1990) Carbonate Sedimentology. Blackwell, Oxford, 482p.
Zhang, F., Romaniello, S. J., Algeo, T. J., Lau, K. V., Clapham, M. E., Richoz, S., Herrmann, A. D., Smith, H., Horacek, M., Anbar, A. D (2018) Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science Advances, 4: e1602921.
Zahedi, M (1991) Explanatory text of the Kashan quadrangle map, 1:250,000, Geological Survey of Iran, F7, 98 p.